1
|
Motorin NA, Makarov GI, Rekstina VV, Evtushenko EG, Sabirzyanov FA, Ziganshin RH, Shaytan AK, Kalebina TS. Yeast Glucan Remodeling Protein Bgl2p: Amyloid Properties and the Mode of Attachment in Cell Wall. Int J Mol Sci 2024; 25:13703. [PMID: 39769468 PMCID: PMC11677059 DOI: 10.3390/ijms252413703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Bgl2p is a major, conservative, constitutive glucanosyltransglycosylase of the yeast cell wall (CW) with amyloid amino acid sequences, strongly non-covalently anchored in CW, but is able to leave it. In the environment, Bgl2p can form fibrils and/or participate in biofilm formation. Despite a long study, the question of how Bgl2p is anchored in CW remains unclear. Earlier, it was demonstrated that Bgl2p lost the ability to attach in CW and to fibrillate after the deletion of nine amino acids in its C-terminal region (CTR). Here, we demonstrated that a Bgl2p anchoring is weakened by substitution Glu-233/Ala in the active center. Using AlphaFold and molecular modeling approach, we demonstrated the role of CTR on Bgl2p attachment and supposed the conformational possibilities determined by the presence or absence of an intramolecular disulfide bond, forming by Cys-310, leading to accessibility of amyloid sequence and β-turns localized in CTR of Bgl2p for protein interactions. We hypothesized the mode of Bgl2p attachment in CW. Using atomic force microscopy, we investigated fibrillar structures formed by peptide V187MANAFSYWQ196 and suggested that it can serve as a factor leading to the induction of amyloid formation during interaction of Bgl2p with other proteins and is of medical interest being located close to the surface of the molecule.
Collapse
Affiliation(s)
- Nikita A. Motorin
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.A.M.); (V.V.R.); (F.A.S.); (A.K.S.)
| | - Gennady I. Makarov
- Laboratory of the Multiscale Modeling of Multicomponent Materials, South Ural State University, Chelyabinsk 454080, Russia;
| | - Valentina V. Rekstina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.A.M.); (V.V.R.); (F.A.S.); (A.K.S.)
| | | | - Fanis A. Sabirzyanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.A.M.); (V.V.R.); (F.A.S.); (A.K.S.)
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Alexey K. Shaytan
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.A.M.); (V.V.R.); (F.A.S.); (A.K.S.)
| | - Tatyana S. Kalebina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.A.M.); (V.V.R.); (F.A.S.); (A.K.S.)
| |
Collapse
|
2
|
Ma J, Jiang Z, Yan Q, Lv A, Li Y, Yang S. Structural and functional analysis of SpGlu64A: a novel glycoside hydrolase family 64 laminaripentaose-producing β-1,3-glucanase from Streptomyces pratensis. FEBS J 2024; 291:2009-2022. [PMID: 38380733 DOI: 10.1111/febs.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Laminaripentaose (L5)-producing β-1,3-glucanases can preferentially cleave the triple-helix curdlan into β-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, β-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a β-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/β) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical β-1,3-glucan. A catalytic framework (β6-β9-β10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of β-1,3-glucanases but will also provide a basis for further enzyme engineering.
Collapse
Affiliation(s)
- Junwen Ma
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, China
| | - Ang Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanxiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Lopez C, Manotas F, Sánches A, Buendía E, Sánches JM, Muñera M, Urrego JR. [Hevea brasiliensis como fuente alergénica: revisión bibliográfica]. REVISTA ALERGIA MÉXICO 2023; 70:146-158. [PMID: 37933924 DOI: 10.29262/ram.v70i3.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 11/08/2023] Open
Abstract
Abstract La planta Hevea brasiliensis se utiliza ampliamente en la industria como fuente de extracción de caucho, un elemento empleado en diversas áreas comerciales y médicas. Los estudios inmunológicos de esta especie indican que es una fuente alergénica importante, que puede provocar sensibilización y alergia. Se han identificado diferentes componentes alergénicos de esta planta, con diversas propiedades inmunitarias y bioquímicas, y estudiado más de diez tipos diferentes de alérgenos, cada uno con distinta capacidad de inducir síntomas alérgicos. En esta revisión informamos los avances actuales en el estudio de Hevea brasiliensis.
Collapse
|
4
|
Scafati V, Troilo F, Ponziani S, Giovannoni M, Scortica A, Pontiggia D, Angelucci F, Di Matteo A, Mattei B, Benedetti M. Characterization of two 1,3-β-glucan-modifying enzymes from Penicillium sumatraense reveals new insights into 1,3-β-glucan metabolism of fungal saprotrophs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:138. [PMID: 36510318 PMCID: PMC9745967 DOI: 10.1186/s13068-022-02233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND 1,3-β-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-β-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-β-glucan without incurring in autolysis. RESULTS To elucidate the molecular mechanisms at the basis of 1,3-β-glucan metabolism in fungal saprotrophs, the putative exo-1,3-β-glucanase G9376 and a truncated form of the putative glucan endo-1,3-β-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-β-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-β-transglucanase/branching activity toward 1,3-β-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-β-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (β/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-β-transglucanase are discussed. CONCLUSIONS The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.
Collapse
Affiliation(s)
- Valentina Scafati
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Troilo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Sara Ponziani
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Moira Giovannoni
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Anna Scortica
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Daniela Pontiggia
- grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Angelucci
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Adele Di Matteo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Benedetta Mattei
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Benedetti
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
5
|
Abstract
INTRODUCTION Allergies affect 20-30% of the population and respiratory allergies are mostly due to pollen grains from anemophilous plants. One to 5% of people suffer from food allergies and clinicians report increasing numbers of pollen-food allergy syndrome (PFAS), such that the symptoms have broadened from respiratory to gastrointestinal, and even to anaphylactic shock in the presence of cofactors. Thirty to 60% of food allergies are associated with pollen allergy while the percentage of pollen allergies associated to food allergy varies according to local environment and dietary habits. AREAS COVERED Articles published in peer-reviewed journals, covered by PubMed databank, clinical data are discussed including symptoms, diagnosis, and management. A chapter emphasizes the role of six well-known allergen families involved in PFAS: PR10 proteins, profilins, lipid transfer proteins, thaumatin-like proteins, isoflavone reductases, and β-1,3 glucanases. The relevance in PFAS of three supplementary allergen families is presented: oleosins, polygalacturonases, and gibberellin-regulated proteins. To support the discussion a few original relevant results were added. EXPERT OPINION Both allergenic sources, pollen and food, are submitted to the same stressful environmental changes resulting in an increase of pathogenesis-related proteins in which numerous allergens are found. This might be responsible for the potential increase of PFAS.
Collapse
Affiliation(s)
- Pascal Poncet
- Armand Trousseau Children Hospital, Immunology Department, Allergy & Environment Research Team , Paris, France.,Immunology Department, Institut Pasteur , Paris, France
| | - Hélène Sénéchal
- Armand Trousseau Children Hospital, Immunology Department, Allergy & Environment Research Team , Paris, France
| | - Denis Charpin
- Aix Marseille University and French Clean Air Association (APPA) , Marseille, France
| |
Collapse
|
6
|
Robledo-Retana T, Mani BM, Teran LM. Ligustrum pollen: New insights into allergic disease. World Allergy Organ J 2020; 13:100104. [PMID: 32055279 PMCID: PMC7005548 DOI: 10.1016/j.waojou.2020.100104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/28/2019] [Accepted: 01/15/2020] [Indexed: 11/29/2022] Open
Abstract
Respiratory allergies are important medical conditions because they affect nearly 20% of the population worldwide, with higher prevalence in industrialized cities. Aeroallergens such as pollen are responsible for up to 40% of respiratory allergies. The pollen from Ligustrum (privet hedge) is a great source of inhalant allergens associated with allergic respiratory diseases around the world. However, it has been underestimated as a sensitization factor. Interestingly, over the last few years a number of novel allergens have been identified from Ligustrum using immunoproteomics technologies. Cross-linking of IgE and Ligustrum allergens could lead to the rapid release of inflammatory mediators by mast cells and basophils. These will promote a late response characterized by activation of T cells and overproduction of Th2 cytokines such as IL-4, IL-5, IL-9, and IL-13. These inflammatory changes cause respiratory diseases like asthma and allergic rhinitis in sensitized subjects. Here, we review Ligustrum pollen allergens and focus on their clinical and immunological significance in allergic disease as well as the use of hypoallergenic derivatives in personalized therapy.
Collapse
Affiliation(s)
- Tania Robledo-Retana
- Biochemistry Department, Queen Mary University of London, Mile End Rd, London, E1 4NS, UK
| | - Blessy M Mani
- Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, C.P. 14080, Mexico City, Mexico
| | - Luis M Teran
- Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, C.P. 14080, Mexico City, Mexico
| |
Collapse
|
7
|
Takashima T, Taku T, Yamanaka T, Fukamizo T, Numata T, Ohnuma T. Crystal structure and biochemical characterization of CJP38, a β-1,3-glucanase and allergen of Cryptomeria japonica pollen. Mol Immunol 2019; 116:199-207. [DOI: 10.1016/j.molimm.2019.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022]
|
8
|
Qin Z, Yan Q, Yang S, Jiang Z. Modulating the function of a β-1,3-glucanosyltransferase to that of an endo-β-1,3-glucanase by structure-based protein engineering. Appl Microbiol Biotechnol 2016; 100:1765-1776. [PMID: 26490553 DOI: 10.1007/s00253-015-7057-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 02/08/2023]
Abstract
A glycoside hydrolase (GH) family 17 β-1,3-glucanosyltransferase (RmBgt17A) from Rhizomucor miehei CAU432 (CGMCC No. 4967) shared very low sequence homology (∼20 % identity) with that of other β-1,3-glucanases,despite their similar structural folds. Structural comparison and sequence alignment between RmBgt17A and GH family 17 β-1,3-glucanases suggested important roles for three residues (Tyr102, Trp157, and Glu158) located in the substrate-binding cleft of RmBgt17A in transglycosylation activity. A series of site-directed mutagenesis studies indicated that a single Glu-to-Ala mutation (E158A) modulates the function of RmBgt17A to that of a β-1,3-glucanase. Mutant E158A exhibited high hydrolytic activity (39.95 U/mg) toward reduced laminarin, 348.5-fold higher than the wild type. Optimal pH and temperature of the purified RmBgt17A-E158A were 4.5 and 55 °C, respectively. TLC analysis suggested that RmBgt17A-E158A is an endo-β-1,3-glucanase. Our study provides novel insight into protein engineering of the substrate-binding cleft of glycoside hydrolases to modulate the function of transglycosylation and hydrolysis.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Post Box 294, Beijing, 100083, China.
| |
Collapse
|
9
|
Pali-Schöll I, Jensen-Jarolim E. The concept of allergen-associated molecular patterns (AAMP). Curr Opin Immunol 2016; 42:113-118. [PMID: 27619413 DOI: 10.1016/j.coi.2016.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/13/2023]
Abstract
For proteins to become allergenic, they need to acquire features enabling them to induce B cell activation and isotype switch to IgE production. Crosslinking of the B-cell receptor (BCR) is the most efficient way to productively activate B-cells. The IgE-crosslinking capability of allergens is equally crucial in the effector phase of immediate type allergy. Antigens, which acquire enhanced crosslinking capacity by oligomerization, aggregation, or the expression of repetitive epitopes may therefore gain allergenic potency. The accumulated evidence for repetitive epitope display by allergens suggests the existence of allergen-associated molecular patterns.
Collapse
Affiliation(s)
- Isabella Pali-Schöll
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Inst of Pathophysiology and Allergy Research, Center of Physiology, Pathophysiology and Immunology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
10
|
Hoffmann HJ. News in Cellular Allergology: A Review of the Human Mast Cell and Basophil Granulocyte Literature from January 2013 to May 2015. Int Arch Allergy Immunol 2016; 168:253-62. [DOI: 10.1159/000443960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Qin Z, Yan Q, Lei J, Yang S, Jiang Z, Wu S. The first crystal structure of a glycoside hydrolase family 17 β-1,3-glucanosyltransferase displays a unique catalytic cleft. ACTA ACUST UNITED AC 2015; 71:1714-24. [PMID: 26249352 DOI: 10.1107/s1399004715011037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/07/2015] [Indexed: 11/10/2022]
Abstract
β-1,3-Glucanosyltransferase (EC 2.4.1.-) plays an important role in the formation of branched glucans, as well as in cell-wall assembly and rearrangement in fungi and yeasts. The crystal structures of a novel glycoside hydrolase (GH) family 17 β-1,3-glucanosyltransferase from Rhizomucor miehei (RmBgt17A) and the complexes of its active-site mutant (E189A) with two substrates were solved at resolutions of 1.30, 2.30 and 2.27 Å, respectively. The overall structure of RmBgt17A had the characteristic (β/α)8 TIM-barrel fold. The structures of RmBgt17A and other GH family 17 members were compared: it was found that a conserved subdomain located in the region near helix α6 and part of the catalytic cleft in other GH family 17 members was absent in RmBgt17A. Instead, four amino-acid residues exposed to the surface of the enzyme (Tyr135, Tyr136, Glu158 and His172) were found in the reducing terminus of subsite +2 of RmBgt17A, hindering access to the catalytic cleft. This distinct region of RmBgt17A makes its catalytic cleft shorter than those of other reported GH family 17 enzymes. The complex structures also illustrated that RmBgt17A can only provide subsites -3 to +2. This structural evidence provides a clear explanation of the catalytic mode of RmBgt17A, in which laminaribiose is released from the reducing end of linear β-1,3-glucan and the remaining glucan is transferred to the end of another β-1,3-glucan acceptor. The first crystal structure of a GH family 17 β-1,3-glucanosyltransferase may be useful in studies of the catalytic mechanism of GH family 17 proteins, and provides a basis for further enzymatic engineering or antifungal drug screening.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jian Lei
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| | - Shiwang Wu
- College of Food Science and Nutritional Engineering, Research and Innovation Center of Food Nutrition and Human Health (Beijing), China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
12
|
Impact of the vulcanization process on the structural characteristics and IgE recognition of two allergens, Hev b 2 and Hev b 6.02, extracted from latex surgical gloves. Mol Immunol 2015; 65:250-8. [DOI: 10.1016/j.molimm.2015.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/17/2014] [Accepted: 01/18/2015] [Indexed: 11/30/2022]
|