1
|
Yang GJ, Liu YJ, Chen RY, Shi JJ, Li CY, Wang R, Yu J, Lu JF, Zhang LL, Yu B, Chen J. PRMT7 in cancer: Structure, effects, and therapeutic potentials. Eur J Med Chem 2025; 283:117103. [PMID: 39615371 DOI: 10.1016/j.ejmech.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
Protein arginine methyltransferase 7 (PRMT7), a type III methyltransferase responsible solely for arginine mono-methylation, plays a critical role in numerous physiological and pathological processes. Recent studies have highlighted its aberrant expression or mutation in various cancers, implicating it in tumorigenesis, cancer progression, and drug resistance. Consequently, PRMT7 has emerged as a promising target for cancer diagnosis and therapeutic intervention. In this review, we present an overview of the molecular structure of PRMT7, discuss its roles and mechanisms in different cancer types, and analyze the binding modes and structure-activity relationships of reported PRMT7 inhibitors. Furthermore, we identify the challenges encountered in functional exploration and drug development targeting PRMT7, propose potential solutions to these challenges, and outline future directions for the development of PRMT7 inhibitors to inform future drug discovery efforts.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, 610106, Chengdu, China.
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 450001, Zhengzhou, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 315211, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Yu D, Zeng L, Wang Y, Cheng B, Li D. Protein arginine methyltransferase 7 modulators in disease therapy: Current progress and emerged opportunity. Bioorg Chem 2025; 154:108094. [PMID: 39733511 DOI: 10.1016/j.bioorg.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Protein arginine methyltransferase 7 (PRMT7) is an essential epigenetic and post-translational regulator in eukaryotic organisms. Dysregulation of PRMT7 is intimately related to multiple types of human diseases, particularly cancer. In addition, PRMT7 exerts multiple effects on cellular processes such as growth, migration, invasion, apoptosis, and drug resistance in various cancers, making it as a promising target for anti-tumor therapeutics. In this review, we initially provide an overview of the structure and biological functions of PRMT7, along with its association with diseases. Subsequently, we summarized the PRMT inhibitors in clinical trials and the co-crystal structural of PRMT7 inhibitors. Moreover, we also focus on recent progress in the design and development of modulators targeting PRMT7, including isoform-selective and non-selective PRMT7 inhibitors, and the dual-target inhibitors based on PRMT7, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and the clinical status of these modulators. Finally, we also provided the challenges and prospective directions for PRMT7 targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Dongmin Yu
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Yuqi Wang
- College of Pharmacy, Gannan Medical University, Ganzhou 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Zhang B, Guan Y, Zeng D, Wang R. Arginine methylation and respiratory disease. Transl Res 2024; 272:140-150. [PMID: 38453053 DOI: 10.1016/j.trsl.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Arginine methylation, a vital post-translational modification, plays a pivotal role in numerous cellular functions such as signal transduction, DNA damage response and repair, regulation of gene transcription, mRNA splicing, and protein interactions. Central to this modification is the role of protein arginine methyltransferases (PRMTs), which have been increasingly recognized for their involvement in the pathogenesis of various respiratory diseases. This review begins with an exploration of the biochemical underpinnings of arginine methylation, shedding light on the intricate molecular regulatory mechanisms governed by PRMTs. It then delves into the impact of arginine methylation and the dysregulation of arginine methyltransferases in diverse pulmonary disorders. Concluding with a focus on the therapeutic potential and recent advancements in PRMT inhibitors, this article aims to offer novel perspectives and therapeutic avenues for the management and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Youhong Guan
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei 230001, Anhui Province, PR China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, Jiangsu Province, PR China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| |
Collapse
|
4
|
Hobble HV, Schaner Tooley CE. Intrafamily heterooligomerization as an emerging mechanism of methyltransferase regulation. Epigenetics Chromatin 2024; 17:5. [PMID: 38429855 PMCID: PMC10908127 DOI: 10.1186/s13072-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 03/03/2024] Open
Abstract
Protein and nucleic acid methylation are important biochemical modifications. In addition to their well-established roles in gene regulation, they also regulate cell signaling, metabolism, and translation. Despite this high biological relevance, little is known about the general regulation of methyltransferase function. Methyltransferases are divided into superfamilies based on structural similarities and further classified into smaller families based on sequence/domain/target similarity. While members within superfamilies differ in substrate specificity, their structurally similar active sites indicate a potential for shared modes of regulation. Growing evidence from one superfamily suggests a common regulatory mode may be through heterooligomerization with other family members. Here, we describe examples of methyltransferase regulation through intrafamily heterooligomerization and discuss how this can be exploited for therapeutic use.
Collapse
Affiliation(s)
- Haley V Hobble
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
6
|
Feoli A, Iannelli G, Cipriano A, Milite C, Shen L, Wang Z, Hadjikyriacou A, Lowe TL, Safaeipour C, Viviano M, Sarno G, Morretta E, Monti MC, Yang Y, Clarke SG, Cosconati S, Castellano S, Sbardella G. Identification of a Protein Arginine Methyltransferase 7 (PRMT7)/Protein Arginine Methyltransferase 9 (PRMT9) Inhibitor. J Med Chem 2023; 66:13665-13683. [PMID: 37560786 PMCID: PMC10578352 DOI: 10.1021/acs.jmedchem.3c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Less studied than the other protein arginine methyltransferase isoforms, PRMT7 and PRMT9 have recently been identified as important therapeutic targets. Yet, most of their biological roles and functions are still to be defined, as well as the structural requirements that could drive the identification of selective modulators of their activity. We recently described the structural requirements that led to the identification of potent and selective PRMT4 inhibitors spanning both the substrate and the cosubstrate pockets. The reanalysis of the data suggested a PRMT7 preferential binding for shorter derivatives and prompted us to extend these structural studies to PRMT9. Here, we report the identification of the first potent PRMT7/9 inhibitor and its binding mode to the two PRMT enzymes. Label-free quantification mass spectrometry confirmed significant inhibition of PRMT activity in cells. We also report the setup of an effective AlphaLISA assay to screen small molecule inhibitors of PRMT9.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Giulia Iannelli
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
- PhD
Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Lei Shen
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Zhihao Wang
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Andrea Hadjikyriacou
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Troy L. Lowe
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Cyrus Safaeipour
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
- PhD
Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Elva Morretta
- Department
of Pharmacy, ProteoMass Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Maria Chiara Monti
- Department
of Pharmacy, ProteoMass Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Yanzhong Yang
- Department
of Cancer Genetics and Epigenetics, Beckman
Research Institute, City of Hope National Cancer Center, Duarte, California 91010, United States
| | - Steven G. Clarke
- Department
of Chemistry and Biochemistry, and the Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, University
of Salerno, via Giovanni
Paolo II 132, Fisciano ,I-84084 SA Italy
| |
Collapse
|
7
|
Kudo F, Chikuma T, Nambu M, Chisuga T, Sumimoto S, Iwasaki A, Suenaga K, Miyanaga A, Eguchi T. Unique Initiation and Termination Mechanisms Involved in the Biosynthesis of a Hybrid Polyketide-Nonribosomal Peptide Lyngbyapeptin B Produced by the Marine Cyanobacterium Moorena bouillonii. ACS Chem Biol 2023; 18:875-883. [PMID: 36921345 PMCID: PMC10127204 DOI: 10.1021/acschembio.3c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Lyngbyapeptin B is a hybrid polyketide-nonribosomal peptide isolated from particular marine cyanobacteria. In this report, we carried out genome sequence analysis of a producer cyanobacterium Moorena bouillonii to understand the biosynthetic mechanisms that generate the unique structural features of lyngbyapeptin B, including the (E)-3-methoxy-2-butenoyl starter unit and the C-terminal thiazole moiety. We identified a putative lyngbyapeptin B biosynthetic (lynB) gene cluster comprising nine open reading frames that include two polyketide synthases (PKSs: LynB1 and LynB2), four nonribosomal peptide synthetases (NRPSs: LynB3, LynB4, LynB5, and LynB6), a putative nonheme diiron oxygenase (LynB7), a type II thioesterase (LynB8), and a hypothetical protein (LynB9). In vitro enzymatic analysis of LynB2 with methyltransferase (MT) and acyl carrier protein (ACP) domains revealed that the LynB2 MT domain (LynB2-MT) catalyzes O-methylation of the acetoacetyl-LynB2 ACP domain (LynB2-ACP) to yield (E)-3-methoxy-2-butenoyl-LynB2-ACP. In addition, in vitro enzymatic analysis of LynB7 revealed that LynB7 catalyzes the oxidative decarboxylation of (4R)-2-methyl-2-thiazoline-4-carboxylic acid to yield 2-methylthiazole in the presence of Fe2+ and molecular oxygen. This result indicates that LynB7 is responsible for the last post-NRPS modification to give the C-terminal thiazole moiety in lyngbyapeptin B biosynthesis. Overall, we identified and characterized a new marine cyanobacterial hybrid PKS-NRPS biosynthetic gene cluster for lyngbyapeptin B production, revealing two unique enzymatic logics.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Takuji Chikuma
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Mizuki Nambu
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Shimpei Sumimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
8
|
Wang L, Zhong H, Xue Z, Wang Y. Res-Dom: predicting protein domain boundary from sequence using deep residual network and Bi-LSTM. BIOINFORMATICS ADVANCES 2022; 2:vbac060. [PMID: 36699417 PMCID: PMC9710680 DOI: 10.1093/bioadv/vbac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Motivation Protein domains are the basic units of proteins that can fold, function and evolve independently. Protein domain boundary partition plays an important role in protein structure prediction, understanding their biological functions, annotating their evolutionary mechanisms and protein design. Although there are many methods that have been developed to predict domain boundaries from protein sequence over the past two decades, there is still much room for improvement. Results In this article, a novel domain boundary prediction tool called Res-Dom was developed, which is based on a deep residual network, bidirectional long short-term memory (Bi-LSTM) and transfer learning. We used deep residual neural networks to extract higher-order residue-related information. In addition, we also used a pre-trained protein language model called ESM to extract sequence embedded features, which can summarize sequence context information more abundantly. To improve the global representation of these deep residual networks, a Bi-LSTM network was also designed to consider long-range interactions between residues. Res-Dom was then tested on an independent test set including 342 proteins and generated correct single-domain and multi-domain classifications with a Matthew's correlation coefficient of 0.668, which was 17.6% higher than the second-best compared method. For domain boundaries, the normalized domain overlapping score of Res-Dom was 0.849, which was 5% higher than the second-best compared method. Furthermore, Res-Dom required significantly less time than most of the recently developed state-of-the-art domain prediction methods. Availability and implementation All source code, datasets and model are available at http://isyslab.info/Res-Dom/.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China.,School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haolin Zhong
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhidong Xue
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China.,School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China.,School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Halabelian L, Barsyte-Lovejoy D. Structure and Function of Protein Arginine Methyltransferase PRMT7. Life (Basel) 2021; 11:768. [PMID: 34440512 PMCID: PMC8399567 DOI: 10.3390/life11080768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023] Open
Abstract
PRMT7 is a member of the protein arginine methyltransferase (PRMT) family, which methylates a diverse set of substrates. Arginine methylation as a posttranslational modification regulates protein-protein and protein-nucleic acid interactions, and as such, has been implicated in various biological functions. PRMT7 is a unique, evolutionarily conserved PRMT family member that catalyzes the mono-methylation of arginine. The structural features, functional aspects, and compounds that inhibit PRMT7 are discussed here. Several studies have identified physiological substrates of PRMT7 and investigated the substrate methylation outcomes which link PRMT7 activity to the stress response and RNA biology. PRMT7-driven substrate methylation further leads to the biological outcomes of gene expression regulation, cell stemness, stress response, and cancer-associated phenotypes such as cell migration. Furthermore, organismal level phenotypes of PRMT7 deficiency have uncovered roles in muscle cell physiology, B cell biology, immunity, and brain function. This rapidly growing information on PRMT7 function indicates the critical nature of context-dependent functions of PRMT7 and necessitates further investigation of the PRMT7 interaction partners and factors that control PRMT7 expression and levels. Thus, PRMT7 is an important cellular regulator of arginine methylation in health and disease.
Collapse
Affiliation(s)
- Levon Halabelian
- Structural Genomics Consortium, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Campagnaro GD, Nay E, Plevin MJ, Cruz AK, Walrad PB. Arginine Methyltransferases as Regulators of RNA-Binding Protein Activities in Pathogenic Kinetoplastids. Front Mol Biosci 2021; 8:692668. [PMID: 34179098 PMCID: PMC8226133 DOI: 10.3389/fmolb.2021.692668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
A large number of eukaryotic proteins are processed by single or combinatorial post-translational covalent modifications that may alter their activity, interactions and fate. The set of modifications of each protein may be considered a "regulatory code". Among the PTMs, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), can affect how a protein interacts with other macromolecules such as nucleic acids or other proteins. In fact, many RNA-binding (RBPs) proteins are targets of PRMTs. The methylation status of RBPs may affect the expression of their bound RNAs and impact a diverse range of physiological and pathological cellular processes. Unlike most eukaryotes, Kinetoplastids have overwhelmingly intronless genes that are arranged within polycistronic units from which mature mRNAs are generated by trans-splicing. Gene expression in these organisms is thus highly dependent on post-transcriptional control, and therefore on the action of RBPs. These genetic features make trypanosomatids excellent models for the study of post-transcriptional regulation of gene expression. The roles of PRMTs in controlling the activity of RBPs in pathogenic kinetoplastids have now been studied for close to 2 decades with important advances achieved in recent years. These include the finding that about 10% of the Trypanosoma brucei proteome carries arginine methylation and that arginine methylation controls Leishmania:host interaction. Herein, we review how trypanosomatid PRMTs regulate the activity of RBPs, including by modulating interactions with RNA and/or protein complex formation, and discuss how this impacts cellular and biological processes. We further highlight unique structural features of trypanosomatid PRMTs and how it contributes to their singular functionality.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edward Nay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Michael J. Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B. Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom,*Correspondence: Pegine B. Walrad,
| |
Collapse
|
11
|
Price OM, Hevel JM. Toward Understanding Molecular Recognition between PRMTs and their Substrates. Curr Protein Pept Sci 2021; 21:713-724. [PMID: 31976831 DOI: 10.2174/1389203721666200124143145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Protein arginine methylation is a widespread eukaryotic posttranslational modification that occurs with as much frequency as ubiquitinylation. Yet, how the nine different human protein arginine methyltransferases (PRMTs) recognize their respective protein targets is not well understood. This review summarizes the progress that has been made over the last decade or more to resolve this significant biochemical question. A multipronged approach involving structural biology, substrate profiling, bioorthogonal chemistry and proteomics is discussed.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States
| |
Collapse
|
12
|
Brown JI, Page BDG, Frankel A. The application of differential scanning fluorimetry in exploring bisubstrate binding to protein arginine N-methyltransferase 1. Methods 2020; 175:10-23. [PMID: 31726226 DOI: 10.1016/j.ymeth.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Protein arginine N-methyltransferases (PRMTs) are a family of 9 enzymes that catalyze mono- or di-methylation of arginine residues using S-adenosyl-l-methionine (SAM). Arginine methylation is an important post-translational modification that can regulate the activity and structure of target proteins. Altered PRMT activity can lead to a variety of health issues including neurodevelopmental disease, autoimmune disorders, cancer, and cardiovascular disease. Thus, developing a robust mechanistic understanding of PRMT function may provide insight into these various disease states and enable the development of potential therapeutic agents. Although PRMTs have been studied for nearly two decades, a consensus regarding the mechanism of action for this class of enzymes has remained noticeably elusive. To address this shortcoming, differential scanning fluorimetry (DSF) was used to gain mechanistic insight into the order of PRMT substrate and cofactor binding. This methodology confirms that PRMT cofactor binding precedes target substrate binding and supports the use of DSF to study bisubstrate enzymatic reaction mechanisms.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada; Department of Oncology and Pathology, Karolinska Institutet, Tomtebodavagen 23A, Stockholm, Sweden.
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, Canada.
| |
Collapse
|
13
|
Li F, Zhu H, Hou M, Zhang X, Li Z, Zhao H, Zhou Q, Zhong X. Identification, expression and functional analysis of prmt7 in medaka Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:77-87. [PMID: 31990140 DOI: 10.1002/jez.b.22927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 11/07/2022]
Abstract
Arginine methylation is an important posttranslational modification and catalyzed by a family of protein arginine methyltransferases (PRMTs). PRMT7 is the type III PRMT and produces solely monomethylarginine products. PRMT7 has been found to play important roles in multiple biological processes in mammals. However, the expression pattern and function of Prmt7 remain largely unknown in fish. In this study, we characterized the medaka prmt7 gene and determined its expression pattern and function during embryogenesis and germ cell development. The results showed that the chromosomal location and gene structure of medaka prmt7 were similar to its mammalian orthologs. Comparisons of deduced amino acid sequences indicated that medaka Prmt7 was a homolog of human PRMT7 with two methyltransferase domains. Reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR revealed that medaka prmt7 had maternal origin with continuous and dynamical expression during embryonic development. Whole-mount in situ hybridization analysis observed that the transcripts of prmt7 were ubiquitous at morula and gastrula stage, and were later riched in the brain and otic vesicles during embryogenesis. In the adult stage, prmt7 messenger RNA was detected in all examined tissues with the high levels in the ovary and testis. The expression of prmt7 in the gonads was restricted to oocytes of the ovary and spermatids/sperm of the testis. Functional analysis showed that knockdown of medaka prmt7 did not reduce the total number of primordial germ cells (PGCs) in vivo but significantly affected PGCs distribution during embryonic development. These results indicate that prmt7 may be involved in germ cell development in medaka.
Collapse
Affiliation(s)
- Fangqing Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Huihui Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Mengying Hou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Xiaoyi Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Zhenzhen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
14
|
Al-Hamashi AA, Diaz K, Huang R. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Curr Protein Pept Sci 2020; 21:699-712. [PMID: 32379587 PMCID: PMC7529871 DOI: 10.2174/1389203721666200507091952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Abstract
Protein arginine methyltransferase (PRMT) enzymes play a crucial role in RNA splicing, DNA damage repair, cell signaling, and differentiation. Arginine methylation is a prominent posttransitional modification of histones and various non-histone proteins that can either activate or repress gene expression. The aberrant expression of PRMTs has been linked to multiple abnormalities, notably cancer. Herein, we review a number of non-histone protein substrates for all nine members of human PRMTs and how PRMT-mediated non-histone arginine methylation modulates various diseases. Additionally, we highlight the most recent clinical studies for several PRMT inhibitors.
Collapse
Affiliation(s)
- Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad, Iraq
| | - Krystal Diaz
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
15
|
Tewary SK, Zheng YG, Ho MC. Protein arginine methyltransferases: insights into the enzyme structure and mechanism at the atomic level. Cell Mol Life Sci 2019; 76:2917-2932. [PMID: 31123777 PMCID: PMC6741777 DOI: 10.1007/s00018-019-03145-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methyl transfer to the arginine residues of protein substrates and are classified into three major types based on the final form of the methylated arginine. Recent studies have shown a strong correlation between PRMT expression level and the prognosis of cancer patients. Currently, crystal structures of eight PRMT members have been determined. Kinetic and structural studies have shown that all PRMTs share similar, but unique catalytic and substrate recognition mechanism. In this review, we discuss the structural similarities and differences of different PRMT members, focusing on their overall structure, S-adenosyl-L-methionine-binding pocket, substrate arginine recognition and catalytic mechanisms. Since PRMTs are valuable targets for drug discovery, we also rationally classify the known PRMT inhibitors into five classes and discuss their mechanisms of action at the atomic level.
Collapse
Affiliation(s)
| | - Y George Zheng
- College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
16
|
Jain K, Clarke SG. PRMT7 as a unique member of the protein arginine methyltransferase family: A review. Arch Biochem Biophys 2019; 665:36-45. [PMID: 30802433 PMCID: PMC6461449 DOI: 10.1016/j.abb.2019.02.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are found in a wide variety of eukaryotic organisms and can regulate gene expression, DNA repair, RNA splicing, and stem cell biology. In mammalian cells, nine genes encode a family of sequence-related enzymes; six of these PRMTs catalyze the formation of ω-asymmetric dimethyl derivatives, two catalyze ω-symmetric dimethyl derivatives, and only one (PRMT7) solely catalyzes ω-monomethylarginine formation. Purified recombinant PRMT7 displays a number of unique enzymatic properties including a substrate preference for arginine residues in R-X-R motifs with additional flanking basic amino acid residues and a temperature optimum well below 37 °C. Evidence has been presented for crosstalk between PRMT7 and PRMT5, where methylation of a histone H4 peptide at R17, a PRMT7 substrate, may activate PRMT5 for methylation of R3. Defects in muscle stem cells (satellite cells) and immune cells are found in mouse Prmt7 homozygous knockouts, while humans lacking PRMT7 are characterized by significant intellectual developmental delays, hypotonia, and facial dysmorphisms. The overexpression of the PRMT7 gene has been correlated with cancer metastasis in humans. Current research challenges include identifying cellular factors that control PRMT7 expression and activity, identifying the physiological substrates of PRMT7, and determining the effect of methylation on these substrates.
Collapse
Affiliation(s)
- Kanishk Jain
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Halby L, Marechal N, Pechalrieu D, Cura V, Franchini DM, Faux C, Alby F, Troffer-Charlier N, Kudithipudi S, Jeltsch A, Aouadi W, Decroly E, Guillemot JC, Page P, Ferroud C, Bonnefond L, Guianvarc'h D, Cavarelli J, Arimondo PB. Hijacking DNA methyltransferase transition state analogues to produce chemical scaffolds for PRMT inhibitors. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0072. [PMID: 29685976 DOI: 10.1098/rstb.2017.0072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
DNA, RNA and histone methylation is implicated in various human diseases such as cancer or viral infections, playing a major role in cell process regulation, especially in modulation of gene expression. Here we developed a convergent synthetic pathway starting from a protected bromomethylcytosine derivative to synthesize transition state analogues of the DNA methyltransferases. This approach led to seven 5-methylcytosine-adenosine compounds that were, surprisingly, inactive against hDNMT1, hDNMT3Acat, TRDMT1 and other RNA human and viral methyltransferases. Interestingly, compound 4 and its derivative 2 showed an inhibitory activity against PRMT4 in the micromolar range. Crystal structures showed that compound 4 binds to the PRMT4 active site, displacing strongly the S-adenosyl-l-methionine cofactor, occupying its binding site, and interacting with the arginine substrate site through the cytosine moiety that probes the space filled by a substrate peptide methylation intermediate. Furthermore, the binding of the compounds induces important structural switches. These findings open new routes for the conception of new potent PRMT4 inhibitors based on the 5-methylcytosine-adenosine scaffold.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Ludovic Halby
- CNRS FRE3600 ETaC, bât. IBCG, 31062 Toulouse, France.,Maison Française d'Oxford, CNRS, MEAE, 2-10 Norham Road, Oxford, UK
| | - Nils Marechal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Céline Faux
- CNRS FRE3600 ETaC, bât. IBCG, 31062 Toulouse, France
| | - Fréderic Alby
- Laboratoire Pierre Fabre, 3 avenue H. Curien, 31100 Toulouse, France
| | - Nathalie Troffer-Charlier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Srikanth Kudithipudi
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Wahiba Aouadi
- Laboratoire Architecture Fonction des Macromolécules Biologiques (AFMB-UMR 7257), Aix-Marseille Université & CNRS, 163 avenue de Luminy, 13288 Marseille cedex 09, France
| | - Etienne Decroly
- Laboratoire Architecture Fonction des Macromolécules Biologiques (AFMB-UMR 7257), Aix-Marseille Université & CNRS, 163 avenue de Luminy, 13288 Marseille cedex 09, France
| | - Jean-Claude Guillemot
- Laboratoire Architecture Fonction des Macromolécules Biologiques (AFMB-UMR 7257), Aix-Marseille Université & CNRS, 163 avenue de Luminy, 13288 Marseille cedex 09, France
| | - Patrick Page
- Epiremed SAS, 1 Rue des Pénitents Blancs, 31000 Toulouse, France
| | - Clotilde Ferroud
- Laboratoire de chimie moléculaire, CMGPCE, EA7341, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Luc Bonnefond
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Dominique Guianvarc'h
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Jean Cavarelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Paola B Arimondo
- CNRS FRE3600 ETaC, bât. IBCG, 31062 Toulouse, France .,Churchill College, CB3 0DS Cambridge, UK
| |
Collapse
|
18
|
He HY, Henderson AC, Du YL, Ryan KS. Two-Enzyme Pathway Links l-Arginine to Nitric Oxide in N-Nitroso Biosynthesis. J Am Chem Soc 2019; 141:4026-4033. [DOI: 10.1021/jacs.8b13049] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | | | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S. Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Cáceres TB, Thakur A, Price OM, Ippolito N, Li J, Qu J, Acevedo O, Hevel JM. Phe71 in Type III Trypanosomal Protein Arginine Methyltransferase 7 (TbPRMT7) Restricts the Enzyme to Monomethylation. Biochemistry 2018; 57:1349-1359. [PMID: 29378138 DOI: 10.1021/acs.biochem.7b01265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation. To test this, we probed the active site of trypanosomal PRMT7 (TbPRMT7) using accelerated molecular dynamics, site-directed mutagenesis, kinetic, binding, and product analyses. Both the dynamics simulations and experimental results show that the mutation of Phe71 to Ile converts the enzyme from a type III methyltransferase into a mixed type I/II, that is, an enzyme that can now perform dimethylation. In contrast, the serine and alanine mutants of Phe71 preserve the type III behavior of the native enzyme. These results are inconsistent with a sterics-only model to explain product specificity. Instead, molecular dynamics simulations of these variants bound to peptides show hydrogen bonding between would-be substrates and Glu172 of TbPRMT7. Only in the case of the Phe71 to Ile mutation is this interaction between MMA and the enzyme maintained, and the geometry for optimal SN2 methyl transfer is obtained. The results of these studies highlight the benefit of combined computational and experimental methods in providing a better understanding for how product specificity is dictated by PRMTs.
Collapse
Affiliation(s)
- Tamar B Cáceres
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Abhishek Thakur
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Owen M Price
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Nicole Ippolito
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York , Kapoor 318, North Campus, Buffalo, New York 14260, United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York , Kapoor 318, North Campus, Buffalo, New York 14260, United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami , Coral Gables, Florida 33146, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| |
Collapse
|
20
|
Brown JI, Koopmans T, van Strien J, Martin NI, Frankel A. Kinetic Analysis of PRMT1 Reveals Multifactorial Processivity and a Sequential Ordered Mechanism. Chembiochem 2017; 19:85-99. [PMID: 29112789 DOI: 10.1002/cbic.201700521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 01/13/2023]
Abstract
Arginine methylation is a prevalent post-translational modification in eukaryotic cells. Two significant debates exist within the field: do these enzymes dimethylate their substrates in a processive or distributive manner, and do these enzymes operate using a random or sequential method of bisubstrate binding? We revealed that human protein arginine N-methyltransferase 1 (PRMT1) enzyme kinetics are dependent on substrate sequence. Further, peptides containing an Nη-hydroxyarginine generally demonstrated substrate inhibition and had improved KM values, which evoked a possible role in inhibitor design. We also revealed that the perceived degree of enzyme processivity is a function of both cofactor and enzyme concentration, suggesting that previous conclusions about PRMT sequential methyl transfer mechanisms require reassessment. Finally, we demonstrated a sequential ordered Bi-Bi kinetic mechanism for PRMT1, based on steady-state kinetic analysis. Together, our data indicate a PRMT1 mechanism of action and processivity that might also extend to other functionally and structurally conserved PRMTs.
Collapse
Affiliation(s)
- Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timo Koopmans
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Jolinde van Strien
- Leiden Institute for Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
21
|
Hadjikyriacou A, Clarke SG. Caenorhabditis elegans PRMT-7 and PRMT-9 Are Evolutionarily Conserved Protein Arginine Methyltransferases with Distinct Substrate Specificities. Biochemistry 2017; 56:2612-2626. [PMID: 28441492 DOI: 10.1021/acs.biochem.7b00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Caenorhabditis elegans protein arginine methyltransferases PRMT-7 and PRMT-9 are two evolutionarily conserved enzymes, with distinct orthologs in plants, invertebrates, and vertebrates. Biochemical characterization of these two enzymes reveals that they share much in common with their mammalian orthologs. C. elegans PRMT-7 produces only monomethylarginine (MMA) and preferentially methylates R-X-R motifs in a broad collection of substrates, including human histone peptides and RG-rich peptides. In addition, the activity of the PRMT-7 enzyme is dependent on temperature, the presence of metal ions, and the reducing agent dithiothreitol. C. elegans PRMT-7 has a substrate specificity and a substrate preference different from those of mammalian PRMT7, and the available X-ray crystal structures of the PRMT7 orthologs show differences in active site architecture. C. elegans PRMT-9, on the other hand, produces symmetric dimethylarginine and MMA on SFTB-2, the conserved C. elegans ortholog of human RNA splicing factor SF3B2, indicating a possible role in the regulation of nematode splicing. In contrast to PRMT-7, C. elegans PRMT-9 appears to be biochemically indistinguishable from its human ortholog.
Collapse
Affiliation(s)
- Andrea Hadjikyriacou
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
22
|
Transition state mimics are valuable mechanistic probes for structural studies with the arginine methyltransferase CARM1. Proc Natl Acad Sci U S A 2017; 114:3625-3630. [PMID: 28330993 DOI: 10.1073/pnas.1618401114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coactivator associated arginine methyltransferase 1 (CARM1) is a member of the protein arginine methyltransferase (PRMT) family and methylates a range of proteins in eukaryotic cells. Overexpression of CARM1 is implicated in a number of cancers, and it is therefore seen as a potential therapeutic target. Peptide sequences derived from the well-defined CARM1 substrate poly(A)-binding protein 1 (PABP1) were covalently linked to an adenosine moiety as in the AdoMet cofactor to generate transition state mimics. These constructs were found to be potent CARM1 inhibitors and also formed stable complexes with the enzyme. High-resolution crystal structures of CARM1 in complex with these compounds confirm a mode of binding that is indeed reflective of the transition state at the CARM1 active site. Given the transient nature of PRMT-substrate complexes, such transition state mimics represent valuable chemical tools for structural studies aimed at deciphering the regulation of arginine methylation mediated by the family of arginine methyltransferases.
Collapse
|
23
|
Cura V, Marechal N, Troffer-Charlier N, Strub JM, van Haren MJ, Martin NI, Cianférani S, Bonnefond L, Cavarelli J. Structural studies of protein arginine methyltransferase 2 reveal its interactions with potential substrates and inhibitors. FEBS J 2016; 284:77-96. [PMID: 27879050 DOI: 10.1111/febs.13953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/27/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022]
Abstract
PRMT2 is the less-characterized member of the protein arginine methyltransferase family in terms of structure, activity, and cellular functions. PRMT2 is a modular protein containing a catalytic Ado-Met-binding domain and unique Src homology 3 domain that binds proteins with proline-rich motifs. PRMT2 is involved in a variety of cellular processes and has diverse roles in transcriptional regulation through different mechanisms depending on its binding partners. PRMT2 has been demonstrated to have weak methyltransferase activity on a histone H4 substrate, but its optimal substrates have not yet been identified. To obtain insights into the function and activity of PRMT2, we solve several crystal structures of PRMT2 from two homologs (zebrafish and mouse) in complex with either the methylation product S-adenosyl-L-homocysteine or other compounds including the first synthetic PRMT2 inhibitor (Cp1) studied so far. We reveal that the N-terminal-containing SH3 module is disordered in the full-length crystal structures, and highlights idiosyncratic features of the PRMT2 active site. We identify a new nonhistone protein substrate belonging to the serine-/arginine-rich protein family which interacts with PRMT2 and we characterize six methylation sites by mass spectrometry. To better understand structural basis for Cp1 binding, we also solve the structure of the complex PRMT4:Cp1. We compare the inhibitor-protein interactions occurring in the PRMT2 and PRMT4 complex crystal structures and show that this compound inhibits efficiently PRMT2. These results are a first step toward a better understanding of PRMT2 substrate recognition and may accelerate the development of structure-based drug design of PRMT2 inhibitors. DATABASE All coordinates and structure factors have been deposited in the Protein Data Bank: zPRMT21-408 -SFG = 5g02; zPRMT273-408 -SAH = 5fub; mPRMT21-445 -SAH = 5ful; mPRMT21-445 -Cp1 = 5fwa, mCARM1130-487 -Cp1 = 5k8v.
Collapse
Affiliation(s)
- Vincent Cura
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Nils Marechal
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Nathalie Troffer-Charlier
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Jean-Marc Strub
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, UMR7178, Université de Strasbourg, France
| | - Matthijs J van Haren
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, UMR7178, Université de Strasbourg, France
| | - Luc Bonnefond
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| | - Jean Cavarelli
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U596, Université de Strasbourg, Illkirch, France
| |
Collapse
|
24
|
Hu H, Luo C, Zheng YG. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1. J Biol Chem 2016; 291:26722-26738. [PMID: 27834681 DOI: 10.1074/jbc.m116.757625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are the enzymes responsible for posttranslational methylation of protein arginine residues in eukaryotic cells, particularly within the histone tails. A detailed mechanistic model of PRMT-catalyzed methylation is currently lacking, but it is essential for understanding the functions of PRMTs in various cellular pathways and for efficient design of PRMT inhibitors as potential treatments for a range of human diseases. In this work, we used stopped-flow fluorescence in combination with global kinetic simulation to dissect the transient kinetics of PRMT1, the predominant type I arginine methyltransferase. Several important mechanistic insights were revealed. The cofactor and the peptide substrate bound to PRMT1 in a random manner and then followed a kinetically preferred pathway to generate the catalytic enzyme-cofactor-substrate ternary complex. Product release proceeded in an ordered fashion, with peptide dissociation followed by release of the byproduct S-adenosylhomocysteine. Importantly, the dissociation rate of the monomethylated intermediate from the ternary complex was much faster than the methyl transfer. Such a result provided direct evidence for distributive arginine dimethylation, which means the monomethylated substrate has to be released to solution and rebind with PRMT1 before it undergoes further methylation. In addition, cofactor binding involved a conformational transition, likely an open-to-closed conversion of the active site pocket. Further, the histone H4 peptide bound to the two active sites of the PRMT1 homodimer with differential affinities, suggesting a negative cooperativity mechanism of substrate binding. These findings provide a new mechanistic understanding of how PRMTs interact with their substrates and transfer methyl groups.
Collapse
Affiliation(s)
- Hao Hu
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602 and
| | - Cheng Luo
- the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Y George Zheng
- From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
25
|
Jain K, Warmack RA, Debler EW, Hadjikyriacou A, Stavropoulos P, Clarke SG. Protein Arginine Methyltransferase Product Specificity Is Mediated by Distinct Active-site Architectures. J Biol Chem 2016; 291:18299-308. [PMID: 27387499 DOI: 10.1074/jbc.m116.740399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 11/06/2022] Open
Abstract
In the family of protein arginine methyltransferases (PRMTs) that predominantly generate either asymmetric or symmetric dimethylarginine (SDMA), PRMT7 is unique in producing solely monomethylarginine (MMA) products. The type of methylation on histones and other proteins dictates changes in gene expression, and numerous studies have linked altered profiles of methyl marks with disease phenotypes. Given the importance of specific inhibitor development, it is crucial to understand the mechanisms by which PRMT product specificity is conferred. We have focused our attention on active-site residues of PRMT7 from the protozoan Trypanosoma brucei We have designed 26 single and double mutations in the active site, including residues in the Glu-Xaa8-Glu (double E) loop and the Met-Gln-Trp sequence of the canonical Thr-His-Trp (THW) loop known to interact with the methyl-accepting substrate arginine. Analysis of the reaction products by high resolution cation exchange chromatography combined with the knowledge of PRMT crystal structures suggests a model where the size of two distinct subregions in the active site determines PRMT7 product specificity. A dual mutation of Glu-181 to Asp in the double E loop and Gln-329 to Ala in the canonical THW loop enables the enzyme to produce SDMA. Consistent with our model, the mutation of Cys-431 to His in the THW loop of human PRMT9 shifts its product specificity from SDMA toward MMA. Together with previous results, these findings provide a structural basis and a general model for product specificity in PRMTs, which will be useful for the rational design of specific PRMT inhibitors.
Collapse
Affiliation(s)
- Kanishk Jain
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Rebeccah A Warmack
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | | | - Andrea Hadjikyriacou
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Peter Stavropoulos
- the Laboratory of Cell Biology and Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York 10065
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
26
|
Abstract
The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states.
Collapse
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Paul R. Thompson
- Department
of Biochemistry and Molecular Pharmacology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program
in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
27
|
Hu H, Qian K, Ho MC, Zheng YG. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Expert Opin Investig Drugs 2016; 25:335-58. [PMID: 26789238 DOI: 10.1517/13543784.2016.1144747] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Arginine methylation is an abundant posttranslational modification occurring in mammalian cells and catalyzed by protein arginine methyltransferases (PRMTs). Misregulation and aberrant expression of PRMTs are associated with various disease states, notably cancer. PRMTs are prominent therapeutic targets in drug discovery. AREAS COVERED The authors provide an updated review of the research on the development of chemical modulators for PRMTs. Great efforts are seen in screening and designing potent and selective PRMT inhibitors, and a number of micromolar and submicromolar inhibitors have been obtained for key PRMT enzymes such as PRMT1, CARM1, and PRMT5. The authors provide a focus on their chemical structures, mechanism of action, and pharmacological activities. Pros and cons of each type of inhibitors are also discussed. EXPERT OPINION Several key challenging issues exist in PRMT inhibitor discovery. Structural mechanisms of many PRMT inhibitors remain unclear. There lacks consistency in potency data due to divergence of assay methods and conditions. Physiologically relevant cellular assays are warranted. Substantial engagements are needed to investigate pharmacodynamics and pharmacokinetics of the new PRMT inhibitors in pertinent disease models. Discovery and evaluation of potent, isoform-selective, cell-permeable and in vivo-active PRMT modulators will continue to be an active arena of research in years ahead.
Collapse
Affiliation(s)
- Hao Hu
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Kun Qian
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| | - Meng-Chiao Ho
- b Institute of Biological Chemistry , Academia Sinica , Nankang , Taipei , Taiwan
| | - Y George Zheng
- a Department of Pharmaceutical and Biomedical Sciences , The University of Georgia , Athens , GA , USA
| |
Collapse
|
28
|
A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Proc Natl Acad Sci U S A 2016; 113:2068-73. [PMID: 26858449 DOI: 10.1073/pnas.1525783113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.
Collapse
|
29
|
Boriack-Sjodin PA, Swinger KK. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes. Biochemistry 2015; 55:1557-69. [PMID: 26652298 DOI: 10.1021/acs.biochem.5b01129] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.
Collapse
Affiliation(s)
- P Ann Boriack-Sjodin
- Epizyme, Inc. , 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Kerren K Swinger
- Epizyme, Inc. , 400 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
31
|
Bonnefond L, Stojko J, Mailliot J, Troffer-Charlier N, Cura V, Wurtz JM, Cianférani S, Cavarelli J. Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. J Struct Biol 2015; 191:175-83. [PMID: 26094878 DOI: 10.1016/j.jsb.2015.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/19/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023]
Abstract
PRMT6 is a protein arginine methyltransferase involved in transcriptional regulation, human immunodeficiency virus pathogenesis, DNA base excision repair, and cell cycle progression. Like other PRMTs, PRMT6 is overexpressed in several cancer types and is therefore considered as a potential anti-cancer drug target. In the present study, we described six crystal structures of PRMT6 from Mus musculus, solved and refined at 1.34 Å for the highest resolution structure. The crystal structures revealed that the folding of the helix αX is required to stabilize a productive active site before methylation of the bound peptide can occur. In the absence of cofactor, metal cations can be found in the catalytic pocket at the expected position of the guanidinium moiety of the target arginine substrate. Using mass spectrometry under native conditions, we show that PRMT6 dimer binds two cofactor and a single H4 peptide molecules. Finally, we characterized a new site of in vitro automethylation of mouse PRMT6 at position 7.
Collapse
Affiliation(s)
- Luc Bonnefond
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Johann Stojko
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, Strasbourg 67087, France
| | - Justine Mailliot
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Nathalie Troffer-Charlier
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Jean-Marie Wurtz
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg, CNRS, UMR7178, 25 rue Becquerel, Strasbourg 67087, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U964, 1 rue Laurent Fries, Illkirch, F-67404, France.
| |
Collapse
|
32
|
Fuhrmann J, Clancy K, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 2015; 115:5413-61. [PMID: 25970731 PMCID: PMC4463550 DOI: 10.1021/acs.chemrev.5b00003] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kathleen
W. Clancy
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
33
|
Hadjikyriacou A, Yang Y, Espejo A, Bedford MT, Clarke SG. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2. J Biol Chem 2015; 290:16723-43. [PMID: 25979344 DOI: 10.1074/jbc.m115.659433] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/29/2022] Open
Abstract
Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides.
Collapse
Affiliation(s)
- Andrea Hadjikyriacou
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los, Angeles, California 90095 and
| | - Yanzhong Yang
- the Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Alexsandra Espejo
- the Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Mark T Bedford
- the Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los, Angeles, California 90095 and
| |
Collapse
|
34
|
Feng Y, Hadjikyriacou A, Clarke SG. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop. J Biol Chem 2014; 289:32604-16. [PMID: 25294873 DOI: 10.1074/jbc.m114.609271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-N(G)-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease.
Collapse
Affiliation(s)
- You Feng
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| | - Andrea Hadjikyriacou
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569
| |
Collapse
|