1
|
Schindl A, Hagen ML, Cooley I, Jäger CM, Warden AC, Zelzer M, Allers T, Croft AK. Ion-combination specific effects driving the enzymatic activity of halophilic alcohol dehydrogenase 2 from Haloferax volcanii in aqueous ionic liquid solvent mixtures. RSC SUSTAINABILITY 2024; 2:2559-2580. [PMID: 39211508 PMCID: PMC11353702 DOI: 10.1039/d3su00412k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/30/2024] [Indexed: 09/04/2024]
Abstract
Biocatalysis in ionic liquids enables novel routes for bioprocessing. Enzymes derived from extremophiles promise greater stability and activity under ionic liquid (IL) influence. Here, we probe the enzyme alcohol dehydrogenase 2 from the halophilic archaeon Haloferax volcanii in thirteen different ion combinations for relative activity and analyse the results against molecular dynamics (MD) simulations of the same IL systems. We probe the ionic liquid property space based on ion polarizability and molecular electrostatic potential. Using the radial distribution functions, survival probabilities and spatial distribution functions of ions, we show that cooperative ion-ion interactions determine ion-protein interactions, and specifically, strong ion-ion interactions equate to higher enzymatic activity if neither of the ions interact strongly with the protein surface. We further demonstrate a tendency for cations interacting with the protein surface to be least detrimental to enzymatic activity if they show a low polarizability when combined with small hydrophilic anions. We also find that the IL ion influence is not mitigated by the surplus of negatively charged residues of the halophilic enzyme. This is shown by free energy landscape analysis in root mean square deviation and distance variation plots of active site gating residues (Trp43 and His273) demonstrating no protection of specific structural elements relevant to preserving enzymatic activity. On the other hand, we observe a general effect across all IL systems that a tight binding of water at acidic residues is preferentially interrupted at these residues through the increased presence of potassium ions. Overall, this study demonstrates a co-ion interaction dependent influence on allosteric surface residues controlling the active/inactive conformation of halophilic alcohol dehydrogenase 2 and the necessity to engineer ionic liquid systems for enzymes that rely on the integrity of functional surface residues regardless of their halophilicity or thermophilicity for use in bioprocessing.
Collapse
Affiliation(s)
- Alexandra Schindl
- Sustainable Process Technologies Group, Department of Chemical and Environmental Engineering, University of Nottingham Nottingham NG7 2RD UK
- School of Pharmacy, University of Nottingham, University Park Campus Nottingham NG7 2RD UK
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Nottingham NG7 2UH UK
- School of Molecular and Cellular Biology, University of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds Leeds LS2 9JT UK
| | - M Lawrence Hagen
- Sustainable Process Technologies Group, Department of Chemical and Environmental Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Isabel Cooley
- Department of Chemical Engineering, Loughborough University LE11 3TU UK
| | - Christof M Jäger
- Sustainable Process Technologies Group, Department of Chemical and Environmental Engineering, University of Nottingham Nottingham NG7 2RD UK
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg Pepparedsleden 1 SE-431 83 Mölndal Sweden
| | - Andrew C Warden
- CSIRO Environment, Commonwealth Scientific and Industrial Research Organization (CSIRO), Research and Innovation Park Acton Canberra ACT 2600 Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Research and Innovation Park Acton Canberra ACT 2600 Australia
| | - Mischa Zelzer
- School of Pharmacy, University of Nottingham, University Park Campus Nottingham NG7 2RD UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Nottingham NG7 2UH UK
| | - Anna K Croft
- Department of Chemical Engineering, Loughborough University LE11 3TU UK
| |
Collapse
|
2
|
Mazmanian K, Grauffel C, Dudev T, Lim C. Protein Ca 2+-Sites Prone to Sr 2+ Substitution: Implications for Strontium Therapy. J Phys Chem B 2023. [PMID: 37327495 DOI: 10.1021/acs.jpcb.3c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Strontium (Sr), an alkali metal with properties similar to calcium, in the form of soluble salts is used to treat osteoporosis. Despite the information accumulated on the role of Sr2+ as a Ca2+ mimetic in biology and medicine, there is no systematic study of how the outcome of the competition between the two dications depends on the physicochemical properties of (i) the metal ions, (ii) the first- and second-shell ligands, and (iii) the protein matrix. Specifically, the key features of a Ca2+-binding protein that enable Sr2+ to displace Ca2+ remain unclear. To address this, we studied the competition between Ca2+ and Sr2+ in protein Ca2+-binding sites using density functional theory combined with the polarizable continuum model. Our findings indicate that Ca2+-sites with multiple strong charge-donating protein ligands, including one or more bidentately bound Asp-/Glu- that are relatively buried and rigid are protected against Sr2+ attack. On the other hand, Ca2+-sites crowded with multiple protein ligands may be prone to Sr2+ displacement if they are solvent-exposed and flexible enough so that an extra backbone ligand from the outer shell can bind to Sr2+. In addition, solvent-exposed Ca2+ sites with only a few weak charge-donating ligands that can rearrange to fit the strontium's coordination requirements are susceptible to Sr2+ displacement. We provide the physical basis of these results and discuss potential novel protein targets of therapeutic Sr2+.
Collapse
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
4
|
Yoneyama A, Takeya S, Lwin TT, Takamatsu D, Baba R, Konishi K, Fujita R, Kobayashi K, Shima A, Kawamoto M, Setoyama H, Ishiji K, Seno Y. Advanced X-ray imaging at beamline 07 of the SAGA Light Source. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1966-1977. [PMID: 34738952 PMCID: PMC8570222 DOI: 10.1107/s1600577521009553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The SAGA Light Source provides X-ray imaging resources based on high-intensity synchrotron radiation (SR) emitted from the superconducting wiggler at beamline 07 (BL07). By combining quasi-monochromatic SR obtained by the newly installed water-cooled metal filter and monochromatic SR selected by a Ge double-crystal monochromator (DCM) with high-resolution lens-coupled X-ray imagers, fast and low-dose micro-computed tomography (CT), fast phase-contrast CT using grating-based X-ray interferometry, and 2D micro-X-ray absorption fine structure analysis can be performed. In addition, by combining monochromatic SR obtained by a Si DCM with large-area fiber-coupled X-ray imagers, high-sensitivity phase-contrast CT using crystal-based X-ray interferometry can be performed. Low-temperature CT can be performed using the newly installed cryogenic system, and time-resolved analysis of the crystallinity of semiconductor devices in operation can be performed using a time-resolved topography system. The details of each instrument and imaging method, together with exemplary measurements, are presented.
Collapse
Affiliation(s)
- Akio Yoneyama
- Beamline Group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan
- Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa 252-0373, Japan
- Research and Development Group, Hitachi Ltd, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Satoshi Takeya
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tukuba, Ibaraki 305-8565, Japan
| | - Thet Thet Lwin
- Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa 252-0373, Japan
| | - Daiko Takamatsu
- Research and Development Group, Hitachi Ltd, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Rika Baba
- Research and Development Group, Hitachi Ltd, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Kumiko Konishi
- Research and Development Group, Hitachi Ltd, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Ryusei Fujita
- Research and Development Group, Hitachi Ltd, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Keisuke Kobayashi
- Research and Development Group, Hitachi Ltd, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Akio Shima
- Research and Development Group, Hitachi Ltd, 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Masahide Kawamoto
- Beamline Group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan
| | - Hiroyuki Setoyama
- Beamline Group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan
| | - Kotaro Ishiji
- Beamline Group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan
| | - Yoshiki Seno
- Beamline Group, SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan
| |
Collapse
|
5
|
Proteins maintain hydration at high [KCl] concentration regardless of content in acidic amino acids. Biophys J 2021; 120:2746-2762. [PMID: 34087206 PMCID: PMC8390907 DOI: 10.1016/j.bpj.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Proteins of halophilic organisms, which accumulate molar concentrations of KCl in their cytoplasm, have a much higher content in acidic amino acids than proteins of mesophilic organisms. It has been proposed that this excess is necessary to maintain proteins hydrated in an environment with low water activity, either via direct interactions between water and the carboxylate groups of acidic amino acids or via cooperative interactions between acidic amino acids and hydrated cations. Our simulation study of five halophilic proteins and five mesophilic counterparts does not support either possibility. The simulations use the AMBER ff14SB force field with newly optimized Lennard-Jones parameters for the interactions between carboxylate groups and potassium ions. We find that proteins with a larger fraction of acidic amino acids indeed have higher hydration levels, as measured by the concentration of water in their hydration shell and the number of water/protein hydrogen bonds. However, the hydration level of each protein is identical at low (bKCl = 0.15 mol/kg) and high (bKCl = 2 mol/kg) KCl concentrations; excess acidic amino acids are clearly not necessary to maintain proteins hydrated at high salt concentration. It has also been proposed that cooperative interactions between acidic amino acids in halophilic proteins and hydrated cations stabilize the folded protein structure and would lead to slower dynamics of the solvation shell. We find that the translational dynamics of the solvation shell is barely distinguishable between halophilic and mesophilic proteins; if such a cooperative effect exists, it does not have that entropic signature.
Collapse
|
6
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
7
|
Tokunaga H, Maeda J, Arakawa T, Tokunaga M. Reversible Activation of Halophilic β-lactamase from Methanol-Induced Inactive Form: Contrast to Irreversible Inactivation of Non-Halophilic Counterpart. Protein J 2017; 36:228-237. [DOI: 10.1007/s10930-017-9715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Lenton S, Walsh DL, Rhys NH, Soper AK, Dougan L. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations. Phys Chem Chem Phys 2016; 18:18054-62. [PMID: 27327567 DOI: 10.1039/c6cp02684b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.
Collapse
Affiliation(s)
- Samuel Lenton
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|