Frank P, Sarangi R, Hedman B, Hodgson KO. Synchrotron X-radiolysis of l-cysteine at the sulfur K-edge: Sulfurous products, experimental surprises, and dioxygen as an oxidoreductant.
J Chem Phys 2019;
150:105101. [PMID:
30876351 PMCID:
PMC7791807 DOI:
10.1063/1.5079419]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 11/14/2022] Open
Abstract
In situ inventory of sulfurous products from the sulfur K-edge synchrotron X-radiolysis of l-cysteine in solid-phase and anaerobic (pH 5) and air-saturated (pH 5, 7, and 9) solutions without and with 40% glycerol is reported. Sequential K-edge X-ray Absorption Spectroscopic (XAS) spectra were acquired. l-cysteine degraded systematically in the X-ray beam. Radiolytic products were inventoried by fits using the XAS spectra of sulfur model compounds. Solid l-cysteine declined to 92% fraction after a single K-edge XAS scan. After six scans, 60% remained, accompanied by 14% cystine, 16% thioether, 5.4% elemental sulfur, and smaller fractions of more highly oxidized products. In air-saturated pH 5 solution, 73% of l-cysteine remained after ten scans, with 2% cystine and 19% elemental sulfur. Oxidation increased with 40% glycerol, yielding 67%, 5%, and 23% fractions, respectively, after ten scans. Higher pH solutions exhibited less radiolytic chemistry. All the reactivity followed first-order kinetics. The anaerobic experiment displayed two reaction phases, with sharp changes in kinetics and radiolytic chemistry. Unexpectedly, the radiolytic oxidation of l-cysteine was increased in anaerobic solution. After ten scans, only 60% of the l-cysteine remained, along with 17% cystine, 22% elemental sulfur, and traces of more highly oxidized products. A new aerobic reaction cycle is hypothesized, wherein dissolved dioxygen captures radiolytic H• or eaq -, enters HO2 •/O2 •-, reductively quenches cysteine thiyl radicals, and cycles back to O2. This cycle is suggested to suppress the radiolytic production of cystine in aerobic solution.
Collapse