1
|
Ferreira J, Domínguez-Arca V, Carneiro J, Prieto G, Taboada P, Moreira de Campos J. Classical and Nonclassical Nucleation Mechanisms of Insulin Crystals. ACS OMEGA 2024; 9:23364-23376. [PMID: 38854527 PMCID: PMC11154923 DOI: 10.1021/acsomega.3c10052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
Although the Classical Nucleation Theory (CNT) is the most consensual theory to explain protein nucleation mechanisms, experimental observations during the shear-induced assays suggest that the CNT does not always describe the insulin nucleation process. This is the case at intermediate precipitant (ZnCl2) solution concentrations (2.3 mM) and high-temperature values (20 and 40 °C) as well as at low precipitant solution concentrations (1.6 mM) and low-temperature values (5 °C). In this work, crystallization events following the CNT registered at high precipitant solution concentrations (3.1 and 4.7 mM) are typically described by a Newtonian response. On the other hand, crystallization events following a nonclassical nucleation pathway seem to involve the formation of a metastable intermediate state before crystal formation and are described by a transition from Newtonian to shear-thinning responses. A dominant shear-thinning behavior (shear viscosity values ranging more than 6 orders of magnitude) is found during aggregation/agglomeration events. The rheological analysis is complemented with different characterization techniques (Dynamic Light Scattering, Energy-Dispersive Spectroscopy, Circular Dichroism, and Differential Scanning Calorimetry) to understand the insulin behavior in solution, especially during the occurrence of aggregation/agglomeration events. To the best of our knowledge, the current work is the first study describing nonclassical nucleation mechanisms during shear-induced crystallization experiments, which reveals the potential of the interdisciplinary approach herein described and opens a window for a clear understanding of protein nucleation mechanisms.
Collapse
Affiliation(s)
- Joana Ferreira
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vicente Domínguez-Arca
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
- Grupo
de Biosistemas e Inginería de Bioprocesos, Instituto de Investigaciones Marinas (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain
| | - João Carneiro
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Gerardo Prieto
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Pablo Taboada
- Grupo
de Física de Coloides y Polímeros, Departamento de Física
de Partículas, Facultad de Física e Instituto de Materiales
(iMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - João Moreira de Campos
- CEFT—Transport
Phenomena Research Center, Department of Chemical Engineering, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Sárkány Z, Figueiredo F, Macedo-Ribeiro S, Martins PM. NAGPKin: Nucleation-and-growth parameters from the kinetics of protein phase separation. Mol Biol Cell 2024; 35:mr1. [PMID: 38117593 PMCID: PMC10916857 DOI: 10.1091/mbc.e23-07-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
The assembly of biomolecular condensate in eukaryotic cells and the accumulation of amyloid deposits in neurons are processes involving the nucleation and growth (NAG) of new protein phases. To therapeutically target protein phase separation, drug candidates are tested in in vitro assays that monitor the increase in the mass or size of the new phase. Limited mechanistic insight is, however, provided if empirical or untestable kinetic models are fitted to these progress curves. Here we present the web server NAGPKin that quantifies NAG rates using mass-based or size-based progress curves as the input data. A report is generated containing the fitted NAG parameters and elucidating the phase separation mechanisms at play. The NAG parameters can be used to predict particle size distributions of, for example, protein droplets formed by liquid-liquid phase separation (LLPS) or amyloid fibrils formed by protein aggregation. Because minimal intervention is required from the user, NAGPKin is a good platform for standardized reporting of LLPS and protein self-assembly data. NAGPKin is useful for drug discovery as well as for fundamental studies on protein phase separation. NAGPKin is freely available (no login required) at https://nagpkin.i3s.up.pt.
Collapse
Affiliation(s)
- Zsuzsa Sárkány
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Francisco Figueiredo
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Sandra Macedo-Ribeiro
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Pedro M. Martins
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
3
|
Ferreira J, Castro F, Kuhn S, Rocha F. Controlled protein crystal nucleation in microreactors: the effect of the droplet volume versus high supersaturation ratios. CrystEngComm 2020. [DOI: 10.1039/d0ce00517g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Control of the enhanced lysozyme nucleation under high supersaturation ratios for a broad range of droplet volumes.
Collapse
Affiliation(s)
- Joana Ferreira
- Department of Chemical Engineering
- KU Leuven
- 3001 Leuven
- Belgium
- LEPABE – Laboratory for Process Engineering
| | - Filipa Castro
- LEPABE – Laboratory for Process Engineering
- Biotechnology and Energy
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - Simon Kuhn
- Department of Chemical Engineering
- KU Leuven
- 3001 Leuven
- Belgium
| | - Fernando Rocha
- LEPABE – Laboratory for Process Engineering
- Biotechnology and Energy
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| |
Collapse
|
4
|
Kovalchuk MV, Boikova AS, Dyakova YA, Ilina KB, Konarev PV, Kryukova AE, Marchenkova MA, Pisarevsky YV, Timofeev VI. Pre-crystallization phase formation of thermolysin hexamers in solution close to crystallization conditions. J Biomol Struct Dyn 2018; 37:3058-3064. [DOI: 10.1080/07391102.2018.1507839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mikhail V. Kovalchuk
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
- St. Petersburg State University, St. Petersburg, Russian Federation
| | - Anastasiia S. Boikova
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia A. Dyakova
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
| | - Kseniia B. Ilina
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
| | - Petr V. Konarev
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alyona E. Kryukova
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
| | - Margarita A. Marchenkova
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
| | - Yurii V. Pisarevsky
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I. Timofeev
- National Research Centre “Kurchatov Institute”, Moscow, Russian Federation
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Ferreira J, Castro F, Rocha F, Kuhn S. Protein crystallization in a droplet-based microfluidic device: Hydrodynamic analysis and study of the phase behaviour. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
The Study of the Mechanism of Protein Crystallization in Space by Using Microchannel to Simulate Microgravity Environment. CRYSTALS 2018. [DOI: 10.3390/cryst8110400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Space is expected to be a convection-free, quiescent environment for the production of large-size and high-quality protein crystals. However, the mechanisms by which the diffusion environment in space improves the quality of the protein crystals are not fully understood. The interior of a microfluidic device can be used to simulate a microgravity environment to investigate the protein crystallization mechanism that occurs in space. In the present study, lysozyme crystals were grown in a prototype microchannel device with a height of 50 μm in a glass-polydimethylsiloxane (PDMS)-glass sandwich structure. Comparative experiments were also conducted in a sample pool with a height of 2 mm under the same growth conditions. We compared the crystal morphologies and growth rates of the grown crystals in the two sample pools. The experimental results showed that at very low initial supersaturation, the morphology and growth rates of lysozyme crystals under the simulated microgravity conditions is similar to that on Earth. With increasing initial supersaturation, a convection-free, quiescent environment is better for lysozyme crystal growth. When the initial supersaturation exceeded a threshold, the growth of the lysozyme crystal surface under the simulated microgravity conditions never completely transform from isotropic to anisotropic. The experimental results showed that the convection may have a dual effect on the crystal morphology. Convection can increase the roughness of the crystal surface and promote the transformation of the crystal form from circular to tetragonal during the crystallization process.
Collapse
|
7
|
Silva A, Sárkány Z, Fraga JS, Taboada P, Macedo-Ribeiro S, Martins PM. Probing the Occurrence of Soluble Oligomers through Amyloid Aggregation Scaling Laws. Biomolecules 2018; 8:biom8040108. [PMID: 30287796 PMCID: PMC6316134 DOI: 10.3390/biom8040108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Drug discovery frequently relies on the kinetic analysis of physicochemical reactions that are at the origin of the disease state. Amyloid fibril formation has been extensively investigated in relation to prevalent and rare neurodegenerative diseases, but thus far no therapeutic solution has directly arisen from this knowledge. Other aggregation pathways producing smaller, hard-to-detect soluble oligomers are increasingly appointed as the main reason for cell toxicity and cell-to-cell transmissibility. Here we show that amyloid fibrillation kinetics can be used to unveil the protein oligomerization state. This is illustrated for human insulin and ataxin-3, two model proteins for which the amyloidogenic and oligomeric pathways are well characterized. Aggregation curves measured by the standard thioflavin-T (ThT) fluorescence assay are shown to reflect the relative composition of protein monomers and soluble oligomers measured by nuclear magnetic resonance (NMR) for human insulin, and by dynamic light scattering (DLS) for ataxin-3. Unconventional scaling laws of kinetic measurables were explained using a single set of model parameters consisting of two rate constants, and in the case of ataxin-3, an additional order-of-reaction. The same fitted parameters were used in a discretized population balance that adequately describes time-course measurements of fibril size distributions. Our results provide the opportunity to study oligomeric targets using simple, high-throughput compatible, biophysical assays.
Collapse
Affiliation(s)
- Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Zsuzsa Sárkány
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Joana S Fraga
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Pablo Taboada
- Área de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria (IDIS), 15706 de Santiago de Compostela, Spain.
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Pedro M Martins
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Recent Insights into the Crystallization Process; Protein Crystal Nucleation and Growth Peculiarities; Processes in the Presence of Electric Fields. CRYSTALS 2017. [DOI: 10.3390/cryst7100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|