1
|
Lawrence JM, Orlans J, Evans G, Orville AM, Foadi J, Aller P. High-throughput in situ experimental phasing. Acta Crystallogr D Struct Biol 2020; 76:790-801. [PMID: 32744261 PMCID: PMC7397491 DOI: 10.1107/s2059798320009109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/03/2020] [Indexed: 11/10/2022] Open
Abstract
In this article, a new approach to experimental phasing for macromolecular crystallography (MX) at synchrotrons is introduced and described for the first time. It makes use of automated robotics applied to a multi-crystal framework in which human intervention is reduced to a minimum. Hundreds of samples are automatically soaked in heavy-atom solutions, using a Labcyte Inc. Echo 550 Liquid Handler, in a highly controlled and optimized fashion in order to generate derivatized and isomorphous crystals. Partial data sets obtained on MX beamlines using an in situ setup for data collection are processed with the aim of producing good-quality anomalous signal leading to successful experimental phasing.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions (BF2i); Institut National des Sciences Appliquées de Lyon (INSA Lyon); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Lyon (Univ Lyon), F-69621 Villeurbanne, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - James Foadi
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
2
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
3
|
Knoška J, Adriano L, Awel S, Beyerlein KR, Yefanov O, Oberthuer D, Peña Murillo GE, Roth N, Sarrou I, Villanueva-Perez P, Wiedorn MO, Wilde F, Bajt S, Chapman HN, Heymann M. Ultracompact 3D microfluidics for time-resolved structural biology. Nat Commun 2020; 11:657. [PMID: 32005876 PMCID: PMC6994545 DOI: 10.1038/s41467-020-14434-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/10/2019] [Indexed: 11/23/2022] Open
Abstract
To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s-1, which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.
Collapse
Affiliation(s)
- Juraj Knoška
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Luigi Adriano
- DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
- EuXFEL, Sample Environment & Characterization Group, European XFEL Holzkoppel 4, 22869, Schenefeld, Germany
| | - Salah Awel
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- CUI, Center for Ultrafast Imaging, Universität Hamburg, 22761, Hamburg, Germany
| | - Kenneth R Beyerlein
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Oleksandr Yefanov
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Dominik Oberthuer
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Gisel E Peña Murillo
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Nils Roth
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Iosifina Sarrou
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Pablo Villanueva-Perez
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00, Lund, Sweden
| | - Max O Wiedorn
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Fabian Wilde
- Helmholtz-Zentrum Geesthacht, Institut für Werkstoffforschung, Max-Planck-Straße. 1, 21502, Geesthacht, Germany
| | - Saša Bajt
- DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Henry N Chapman
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- CUI, Center for Ultrafast Imaging, Universität Hamburg, 22761, Hamburg, Germany.
| | - Michael Heymann
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- IBBS, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
4
|
Zhao FZ, Zhang B, Yan EK, Sun B, Wang ZJ, He JH, Yin DC. A guide to sample delivery systems for serial crystallography. FEBS J 2019; 286:4402-4417. [PMID: 31618529 DOI: 10.1111/febs.15099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
Crystallography has made a notable contribution to our knowledge of structural biology. For traditional crystallography experiments, the growth of crystals with large size and high quality is crucial, and it remains one of the bottlenecks. In recent years, the successful application of serial femtosecond crystallography (SFX) provides a new choice when only numerous microcrystals can be obtained. The intense pulsed radiation of X-ray free-electron lasers (XFELs) enables the data collection of small-sized crystals, making the size of crystals no longer a limiting factor. The ultrafast pulses of XFELs can achieve 'diffraction before destruction', which effectively avoids radiation damage and realizes diffraction near physiological temperatures. More recently, the SFX has been expanded to serial crystallography (SX) that can additionally employ synchrotron radiation as the light source. In addition to the traditional ones, these techniques provide complementary opportunities for structural determination. The development of SX experiments strongly relies on the advancement of hardware including the sample delivery system, the X-ray source, and the X-ray detector. Here, in this review, we categorize the existing sample delivery systems, summarize their progress, and propose their future prospectives.
Collapse
Affiliation(s)
- Feng-Zhu Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Bin Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Er-Kai Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Bo Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Jun Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Da-Chuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen, China
| |
Collapse
|
5
|
Abstract
Until recently X-ray crystallography has been the standard technique for virus structure determinations. Available X-ray sources have continuously improved over the decades, leading to the realization of X-ray free-electron lasers (XFELs). They provide high-intensity femtosecond X-ray pulses, which allow for new kinds of experiments by making use of the diffraction-before-destruction principle. By overcoming classical dose constraints, they at least in principle allow researchers to perform X-ray virus structure determination for single particles at room temperature. Simultaneously, the availability of XFELs led to the development of the method of serial femtosecond crystallography, where a crystal structure is determined from the measurement of hundreds to thousands of microcrystals. In the case of virus crystallography this method does not require freezing of the crystals and allows researchers to perform experiments under non-equilibrium conditions (e.g., by laser-induced temperature jumps or rapid chemical mixing), which is currently not possible with electron microscopy.
Collapse
Affiliation(s)
- A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M.O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Mühlig K, Gañán-Calvo AM, Andreasson J, Larsson DSD, Hajdu J, Svenda M. Nanometre-sized droplets from a gas dynamic virtual nozzle. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719008318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This paper reports on improved techniques to create and characterize nanometre-sized droplets from dilute aqueous solutions by using a gas dynamic virtual nozzle (GDVN). It describes a method to measure the size distribution of uncharged droplets, using an environmental scanning electron microscope, and provides theoretical models for the droplet sizes created. The results show that droplet sizes can be tuned by adjusting the gas and liquid flow rates in the GDVN, and at the lowest liquid flow rates, the size of the water droplets peaks at about 120 nm. This droplet size is similar to droplet sizes produced by electrospray ionization but requires neither electrolytes nor charging of the solution. The results presented here identify a new operational regime for GDVNs and show that predictable droplet sizes, comparable to those obtained by electrospray ionization, can be produced by purely mechanical means in GDVNs.
Collapse
|
7
|
Echelmeier A, Sonker M, Ros A. Microfluidic sample delivery for serial crystallography using XFELs. Anal Bioanal Chem 2019; 411:6535-6547. [PMID: 31250066 DOI: 10.1007/s00216-019-01977-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) is an emerging field for structural biology. One of its major impacts lies in the ability to reveal the structure of complex proteins previously inaccessible with synchrotron-based crystallography techniques and allowing time-resolved studies from femtoseconds to seconds. The nature of this serial technique requires new approaches for crystallization, data analysis, and sample delivery. With continued advancements in microfabrication techniques, various developments have been reported in the past decade for innovative and efficient microfluidic sample delivery for crystallography experiments using XFELs. This article summarizes the recent developments in microfluidic sample delivery with liquid injection and fixed-target approaches, which allow exciting new research with XFELs. Graphical abstract.
Collapse
Affiliation(s)
- Austin Echelmeier
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA. .,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA.
| |
Collapse
|
8
|
Klimešová E, Kulyk O, Gu Y, Dittrich L, Korn G, Hajdu J, Krikunova M, Andreasson J. Plasma channel formation in NIR laser-irradiated carrier gas from an aerosol nanoparticle injector. Sci Rep 2019; 9:8851. [PMID: 31221980 PMCID: PMC6586673 DOI: 10.1038/s41598-019-45120-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/22/2019] [Indexed: 11/30/2022] Open
Abstract
Aerosol nanoparticle injectors are fundamentally important for experiments where container-free sample handling is needed to study isolated nanoparticles. The injector consists of a nebuliser, a differential pumping unit, and an aerodynamic lens to create and deliver a focused particle beam to the interaction point inside a vacuum chamber. The tightest focus of the particle beam is close to the injector tip. The density of the focusing carrier gas is high at this point. We show here how this gas interacts with a near infrared laser pulse (800 nm wavelength, 120 fs pulse duration) at intensities approaching 1016 Wcm-2. We observe acceleration of gas ions to kinetic energies of 100s eV and study their energies as a function of the carrier gas density. Our results indicate that field ionisation by the intense near-infrared laser pulse opens up a plasma channel behind the laser pulse. The observations can be understood in terms of a Coulomb explosion of the created underdense plasma channel. The results can be used to estimate gas background in experiments with the injector and they open up opportunities for a new class of studies on electron and ion dynamics in nanoparticles surrounded by a low-density gas.
Collapse
Affiliation(s)
- Eva Klimešová
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic.
| | - Olena Kulyk
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Yanjun Gu
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Laura Dittrich
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
- Technische Universität Berlin, Institut für Optik und Atomare Physik, ER 1-1, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Georg Korn
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Janos Hajdu
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24, Uppsala, Sweden
| | - Maria Krikunova
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
- Technische Universität Berlin, Institut für Optik und Atomare Physik, ER 1-1, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Jakob Andreasson
- ELI Beamlines, Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
- Chalmers University of Technology, Department of Physics, Göteborg, Sweden
| |
Collapse
|
9
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
10
|
Mancuso AP, Aquila A, Batchelor L, Bean RJ, Bielecki J, Borchers G, Doerner K, Giewekemeyer K, Graceffa R, Kelsey OD, Kim Y, Kirkwood HJ, Legrand A, Letrun R, Manning B, Lopez Morillo L, Messerschmidt M, Mills G, Raabe S, Reimers N, Round A, Sato T, Schulz J, Signe Takem C, Sikorski M, Stern S, Thute P, Vagovič P, Weinhausen B, Tschentscher T. The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:660-676. [PMID: 31074429 PMCID: PMC6510195 DOI: 10.1107/s1600577519003308] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/07/2019] [Indexed: 05/22/2023]
Abstract
The European X-ray Free-Electron Laser (FEL) became the first operational high-repetition-rate hard X-ray FEL with first lasing in May 2017. Biological structure determination has already benefitted from the unique properties and capabilities of X-ray FELs, predominantly through the development and application of serial crystallography. The possibility of now performing such experiments at data rates more than an order of magnitude greater than previous X-ray FELs enables not only a higher rate of discovery but also new classes of experiments previously not feasible at lower data rates. One example is time-resolved experiments requiring a higher number of time steps for interpretation, or structure determination from samples with low hit rates in conventional X-ray FEL serial crystallography. Following first lasing at the European XFEL, initial commissioning and operation occurred at two scientific instruments, one of which is the Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument. This instrument provides a photon energy range, focal spot sizes and diagnostic tools necessary for structure determination of biological specimens. The instrumentation explicitly addresses serial crystallography and the developing single particle imaging method as well as other forward-scattering and diffraction techniques. This paper describes the major science cases of SPB/SFX and its initial instrumentation - in particular its optical systems, available sample delivery methods, 2D detectors, supporting optical laser systems and key diagnostic components. The present capabilities of the instrument will be reviewed and a brief outlook of its future capabilities is also described.
Collapse
Affiliation(s)
- Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrew Aquila
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | | | | | | | - Rita Graceffa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Steffen Raabe
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Nadja Reimers
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | | | | | | | - Stephan Stern
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Prasad Thute
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Patrik Vagovič
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | | | | |
Collapse
|
11
|
Hantke MF, Bielecki J, Kulyk O, Westphal D, Larsson DSD, Svenda M, Reddy HKN, Kirian RA, Andreasson J, Hajdu J, Maia FRNC. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCRJ 2018; 5:673-680. [PMID: 30443352 PMCID: PMC6211534 DOI: 10.1107/s2052252518010837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/26/2018] [Indexed: 05/25/2023]
Abstract
Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.
Collapse
Affiliation(s)
- Max F. Hantke
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford OX1 3TA, UK
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Olena Kulyk
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Hemanth K. N. Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Richard A. Kirian
- Department of Physics, Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|