1
|
Costa-Rodrigues D, Leite JP, Saraiva MJ, Almeida MR, Gales L. Transthyretin monomers: a new plasma biomarker for pre-symptomatic transthyretin-related amyloidosis. Amyloid 2024; 31:202-208. [PMID: 38946492 DOI: 10.1080/13506129.2024.2368860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Genotyping and amyloid fibril detection in tissues are generally considered the diagnostic gold standard in transthyretin-related amyloidosis. Patients carry less stable TTR homotetramers prone to dissociation into non-native monomers, which rapidly self-assemble into oligomers and, ultimately, amyloid fibrils. Thus, the initial event of the amyloid cascade produces the smallest transthyretin species: the monomers. This creates engineering opportunities for diagnosis that remain unexplored. METHODS We hypothesise that molecular sieving represents a promising method for isolating and concentrating trace TTR monomers from the tetramers present in plasma samples. Subsequently, immunodetection can be utilised to distinguish monomeric TTR from other low molecular weight proteins within the adsorbed fraction. A two-step assay was devised (ImmunoSieve assay), combining molecular sieving and immunodetection for sensing monomeric transthyretin. This assay was employed to analyse plasma microsamples from 10 individuals, including 5 pre-symptomatic carriers of TTR-V30M, the most prevalent amyloidosis-associated TTR variant worldwide, and 5 healthy controls. RESULTS The ImmunoSieve assay enable sensitive detection of monomeric transthyretin in plasma microsamples. Moreover, the circulating monomeric TTR levels were significantly higher in carriers of amyloidogenic TTR mutation. CONCLUSIONS Monomeric TTR can function as a biomarker for evaluating disease progression and assessing responses to therapies targeted at stabilising native TTR.
Collapse
Affiliation(s)
- Diogo Costa-Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - José P Leite
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Maria João Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Maria Rosário Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Luís Gales
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
2
|
Yamada E, Sakamoto H, Matsui H, Uruga T, Sugimoto K, Ha MQ, Dam HC, Matsuda R, Tada M. Three-Dimensional Visualization of Adsorption Distribution in a Single Crystalline Particle of a Metal-Organic Framework. J Am Chem Soc 2024; 146:9181-9190. [PMID: 38528433 DOI: 10.1021/jacs.3c14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Many unique adsorption properties of metal-organic frameworks (MOFs) have been revealed by diffraction crystallography, visualizing their vacant and guest-loaded crystal structures at the molecular scale. However, it has been challenging to see the spatial distribution of the adsorption behaviors throughout a single MOF particle in a transient equilibrium state. Here, we report three-dimensional (3D) visualization of molecular adsorption behaviors in a single crystalline particle of a MOF by in situ X-ray absorption fine structure spectroscopy combined with computed tomography for the first time. The 3D maps of water-coordinated Co sites in a 100 μm-scale MOF-74-Co crystal were obtained with 1 μm spatial resolution under several water vapor pressures. Through the visualization of the water vapor adsorption process, 3D spectroimaging revealed the mechanism and spatial heterogeneity of guest adsorption inside a single particle of a crystalline MOF.
Collapse
Affiliation(s)
- Emina Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo, 679-5198, Japan
| | - Hirotoshi Sakamoto
- RIKEN SPring-8 Center, Sayo, Hyogo, 679-5198, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Hirosuke Matsui
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo, 679-5198, Japan
| | - Tomoya Uruga
- Japan Synchrotron Radiation Research Center (JASRI)/SPring-8, Koto, Sayo, Hyogo 679-5198, Japan
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Center (JASRI)/SPring-8, Koto, Sayo, Hyogo 679-5198, Japan
- Faculty of Science and Engineering, Graduate School of Science and Engineering, Kindai University, Kowakae. Higashiosaka, Osaka 577-8502, Japan
| | - Minh-Quyet Ha
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Hieu-Chi Dam
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
- Institute for Advanced Study, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo, 679-5198, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Institute for Advanced Study, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
3
|
The Challenge of Visualizing the Bridging Hydride at the Active Site and Proton Network of [NiFe]-Hydrogenase by Neutron Crystallography. Top Catal 2021. [DOI: 10.1007/s11244-021-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Nakamura Y, Baba S, Mizuno N, Irie T, Ueno G, Hirata K, Ito S, Hasegawa K, Yamamoto M, Kumasaka T. Computer-controlled liquid-nitrogen drizzling device for removing frost from cryopreserved crystals. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:616-622. [PMID: 33263574 PMCID: PMC7716257 DOI: 10.1107/s2053230x2001420x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 11/11/2022]
Abstract
Cryocrystallography is a technique that is used more often than room-temperature data collection in macromolecular crystallography. One of its advantages is the significant reduction in radiation damage, which is especially useful in synchrotron experiments. Another advantage is that cryopreservation provides simple storage of crystals and easy transportation to a synchrotron. However, this technique sometimes results in the undesirable adhesion of frost to mounted crystals. The frost produces noisy diffraction images and reduces the optical visibility of crystals, which is crucial for aligning the crystal position with the incident X-ray position. To resolve these issues, a computer-controlled device has been developed that drizzles liquid nitrogen over a crystal to remove frost. It was confirmed that the device works properly, reduces noise from ice rings in diffraction images and enables the centering of crystals with low visibility owing to frost adhesion.
Collapse
Affiliation(s)
- Yuki Nakamura
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Seiki Baba
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takaki Irie
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Sho Ito
- ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation, 3-9-11 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
5
|
Hiromoto T, Nishikawa K, Inoue S, Matsuura H, Hirano Y, Kurihara K, Kusaka K, Cuneo M, Coates L, Tamada T, Higuchi Y. Towards cryogenic neutron crystallography on the reduced form of [NiFe]-hydrogenase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:946-953. [PMID: 33021496 DOI: 10.1107/s2059798320011365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022]
Abstract
A membrane-bound hydrogenase from Desulfovibrio vulgaris Miyazaki F is a metalloenzyme that contains a binuclear Ni-Fe complex in its active site and mainly catalyzes the oxidation of molecular hydrogen to generate a proton gradient in the bacterium. The active-site Ni-Fe complex of the aerobically purified enzyme shows its inactive oxidized form, which can be reactivated through reduction by hydrogen. Here, in order to understand how the oxidized form is reactivated by hydrogen and further to directly evaluate the bridging of a hydride ligand in the reduced form of the Ni-Fe complex, a neutron structure determination was undertaken on single crystals grown in a hydrogen atmosphere. Cryogenic crystallography is being introduced into the neutron diffraction research field as it enables the trapping of short-lived intermediates and the collection of diffraction data to higher resolution. To optimize the cooling of large crystals under anaerobic conditions, the effects on crystal quality were evaluated by X-rays using two typical methods, the use of a cold nitrogen-gas stream and plunge-cooling into liquid nitrogen, and the former was found to be more effective in cooling the crystals uniformly than the latter. Neutron diffraction data for the reactivated enzyme were collected at the Japan Photon Accelerator Research Complex under cryogenic conditions, where the crystal diffracted to a resolution of 2.0 Å. A neutron diffraction experiment on the reduced form was carried out at Oak Ridge National Laboratory under cryogenic conditions and showed diffraction peaks to a resolution of 2.4 Å.
Collapse
Affiliation(s)
- Takeshi Hiromoto
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| | - Seiya Inoue
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| | - Hiroaki Matsuura
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Kazuo Kurihara
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Matthew Cuneo
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Yoshiki Higuchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| |
Collapse
|
6
|
Karpik A, Martiel I, Kristiansen PM, Padeste C. Fabrication of ultrathin suspended polymer membranes as supports for serial protein crystallography. MICRO AND NANO ENGINEERING 2020. [DOI: 10.1016/j.mne.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|