1
|
Ma C, Lin X, Han Z, Xiao S, He Y, He Z, Wang F, Cheng H, Zuo T. In situ small-angle X-ray scattering measurement at the Very Small Angle Neutron Scattering Instrument at the China Spallation Neutron Source. J Appl Crystallogr 2025; 58:573-580. [PMID: 40170974 PMCID: PMC11957413 DOI: 10.1107/s1600576725001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/11/2025] [Indexed: 04/03/2025] Open
Abstract
Small-angle X-ray and neutron scattering (SAXS and SANS) offer complementary insights into multi-scale and multiphase structures. Efforts have been made to integrate SAXS into SANS instruments, with only D22 at the Institut Laue-Langevin successfully implementing a SAXS setup; this was constrained to a horizontal geometry due to space limitations and high radiation noise. Here, we introduce an in situ vertical SAXS setup at beamline 14, Very Small Angle Neutron Scattering (VSANS) instrument, at the China Spallation Neutron Source. The compact vertical SAXS instrument without a beam stop, measuring 87 cm × 93 cm × 240 cm (W × L × H) and featuring a hoisting frame, can be easily installed in the VSANS sample room within 5 h. Utilizing a 50 mm-diameter neutron collimation guide, we can simultaneously detect X-rays from below and neutrons from behind, with the backboard of the SAXS chamber coated in a boron-aluminium alloy to reduce neutron background interference. Through testing with standard samples like deuterated and hydrogenated PEG, silver behenate, LaB6, and glass carbon, we demonstrate that concurrent neutron and X-ray measurements are successful.
Collapse
Affiliation(s)
- Changli Ma
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Xiong Lin
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Zehuan Han
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Songwen Xiao
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Yongcheng He
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Zhenqiang He
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Fangwei Wang
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
- School of Nuclear Science and Technology University of Chinese Academy of SciencesBeijing 100049 People’s Republic of China
- Institute of Physics Chinese Academy of SciencesBeijing 100190 People’s Republic of China
| | - He Cheng
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| | - Taisen Zuo
- Spallation Neutron Source Science Center, Dongguan 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP) Chinese Academy of Science (CAS)Beijing 100049 People’s Republic of China
| |
Collapse
|
2
|
Staeck S, Baumann J, Hönicke P, Wauschkuhn N, Spikermann F, Grötzsch D, Stiel H, Kanngießer B. Investigation of Ti nanostructures via laboratory scanning-free GEXRF. NANOSCALE 2025; 17:3411-3420. [PMID: 39704613 DOI: 10.1039/d4nr02445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The ability to characterize periodic nanostructures in the laboratory gains more attention as nanotechnology is widely utilized in a variety of application fields. Scanning-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is a promising candidate to allow non-destructive, element-sensitive characterization of sample structures down to the nanometer range for process engineering. Adopting a complementary metal-oxide semiconductor (CMOS) detector to work energy-dispersively via single-photon detection, the whole range of emission angles of interest can be recorded at once. In this work, a setup based on a Cr X-ray tube and a CMOS detector is used to investigate two TiO2 nanogratings and a TiO2 layer sample in the tender X-ray range. The measurement results are compared to simulations of sample models based on known sample parameters. The fluorescence emission is simulated using the finite-element method together with a Maxwell-solver. In addition, a reconstruction of the sample model based on the measurement data is conducted to illustrate the feasibility of laboratory scanning-free GEXRF as a technique to non-destructively characterize periodic nanostructures in the tender X-ray range.
Collapse
Affiliation(s)
- Steffen Staeck
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Jonas Baumann
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Philipp Hönicke
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Nils Wauschkuhn
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | | | - Daniel Grötzsch
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Holger Stiel
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Birgit Kanngießer
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| |
Collapse
|
3
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Le Brun AP, Gilbert EP. Advances in sample environments for neutron scattering for colloid and interface science. Adv Colloid Interface Sci 2024; 327:103141. [PMID: 38631095 DOI: 10.1016/j.cis.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This review describes recent advances in sample environments across the full complement of applicable neutron scattering techniques to colloid and interface science. Temperature, pressure, flow, tensile testing, ultrasound, chemical reactions, IR/visible/UV light, confinement, humidity and electric and magnetic field application, as well as tandem X-ray methods, are all addressed. Consideration for material choices in sample environments and data acquisition methods are also covered as well as discussion of current and potential future use of machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
5
|
Unruh T, Götz K, Vogel C, Fröhlich E, Scheurer A, Porcar L, Steiniger F. Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions. ACS NANO 2024; 18:9746-9764. [PMID: 38514237 DOI: 10.1021/acsnano.4c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.
Collapse
Affiliation(s)
- Tobias Unruh
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Klaus Götz
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Carola Vogel
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Erik Fröhlich
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Lehrstuhl für Anorganische und Allgemeine Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Lionel Porcar
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
6
|
Zuo T, Han Z, Ma C, Xiao S, Lin X, Li Y, Wang F, He Y, He Z, Zhang J, Wang G, Cheng H. The multi-slit very small angle neutron scattering instrument at the China Spallation Neutron Source. J Appl Crystallogr 2024; 57:380-391. [PMID: 38596742 PMCID: PMC11001394 DOI: 10.1107/s1600576724000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/22/2024] [Indexed: 04/11/2024] Open
Abstract
A multi-slit very small angle neutron scattering (MS-VSANS) instrument has been finally accepted at the China Spallation Neutron Source (CSNS). It is the first spallation neutron source based VSANS instrument. MS-VSANS has a good signal-to-noise ratio and can cover a wide scattering vector magnitude range from 0.00028 to 1.4 Å-1. In its primary flight path, a combined curved multichannel beam bender and sections of rotary exchange drums are installed to minimize the background downstream of the instrument. An exchangeable multi-slit beam focusing system is integrated into the primary flight path, enabling access to a minimum scattering vector magnitude of 0.00028 Å-1. MS-VSANS has three modes, namely conventional SANS, polarizing SANS and VSANS modes. In the SANS mode, three motorized high-efficiency 3He tube detectors inside the detector tank cover scattering angles from 0.12 to 35° simultaneously. In the polarizing SANS mode, a double-V cavity provides highly polarized neutrons and a high-efficiency 3He polarization analyser allows full polarization analysis. In the VSANS mode, an innovative high-resolution gas electron multiplier detector covers scattering angles from 0.016 to 0.447°. The absolute scattering intensities of a selection of standard samples are obtained using the direct-beam technique; the effectiveness of this method is verified by testing the standard samples and comparing the results with those from a benchmark instrument. The MS-VSANS instrument is designed to be flexible and versatile and all the design goals have been achieved.
Collapse
Affiliation(s)
- Taisen Zuo
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Zehua Han
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Changli Ma
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Songwen Xiao
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Xiong Lin
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Yuqing Li
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Fangwei Wang
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
| | - Yongcheng He
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Zhenqiang He
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Junsong Zhang
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Guangyuan Wang
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - He Cheng
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| |
Collapse
|
7
|
Yin JF, Amidani L, Chen J, Li M, Xue B, Lai Y, Kvashnina K, Nyman M, Yin P. Spatiotemporal Studies of Soluble Inorganic Nanostructures with X-rays and Neutrons. Angew Chem Int Ed Engl 2024; 63:e202310953. [PMID: 37749062 DOI: 10.1002/anie.202310953] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
This Review addresses the use of X-ray and neutron scattering as well as X-ray absorption to describe how inorganic nanostructured materials assemble, evolve, and function in solution. We first provide an overview of techniques and instrumentation (both large user facilities and benchtop). We review recent studies of soluble inorganic nanostructure assembly, covering the disciplines of materials synthesis, processes in nature, nuclear materials, and the widely applicable fundamental processes of hydrophobic interactions and ion pairing. Reviewed studies cover size regimes and length scales ranging from sub-Ångström (coordination chemistry and ion pairing) to several nanometers (molecular clusters, i.e. polyoxometalates, polyoxocations, and metal-organic polyhedra), to the mesoscale (supramolecular assembly processes). Reviewed studies predominantly exploit 1) SAXS/WAXS/SANS (small- and wide-angle X-ray or neutron scattering), 2) PDF (pair-distribution function analysis of X-ray total scattering), and 3) XANES and EXAFS (X-ray absorption near-edge structure and extended X-ray absorption fine structure, respectively). While the scattering techniques provide structural information, X-ray absorption yields the oxidation state in addition to the local coordination. Our goal for this Review is to provide information and inspiration for the inorganic/materials science communities that may benefit from elucidating the role of solution speciation in natural and synthetic processes.
Collapse
Affiliation(s)
- Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Lucia Amidani
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- Institute of Advanced Science Facilities, Shenzhen, 518107, China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| | - Kristina Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR) P.O. Box 510119, 01314, Dresden, Germany
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
8
|
Haas S, Sun X, Conceição ALC, Horbach J, Pfeffer S. The new small-angle X-ray scattering beamline for materials research at PETRA III: SAXSMAT beamline P62. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1156-1167. [PMID: 37860939 PMCID: PMC10624033 DOI: 10.1107/s1600577523008603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
The SAXSMAT beamline P62 (Small-Angle X-ray Scattering beamline for Materials Research) is a new beamline at the high-energy storage ring PETRA III at DESY. This beamline is dedicated to combined small- and wide-angle X-ray scattering (SAXS/WAXS) techniques for both soft and hard condensed matter systems. It works mainly in transmission geometry. The beamline covers an energy range from 3.5 keV to 35.0 keV, which fulfills the requirements of the user community to perform anomalous scattering experiments. Mirrors are used to reduce the intensity of higher harmonics. Furthermore, the mirrors and 2D compound refracting lenses can focus the beam down to a few micrometres at the sample position. This option with the high photon flux enables also SAXS/WAXS tensor tomography experiments to be performed at this new beamline in a relatively short time. The first SAXS/WAXS pattern was collected in August 2021, while the first user experiment was carried out two months later. Since January 2022 the beamline has been in regular user operation mode. In this paper the beamline optics and the SAXS/WAXS instrument are described and two examples are briefly shown.
Collapse
Affiliation(s)
- S. Haas
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - X. Sun
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - A. L. C. Conceição
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - J. Horbach
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - S. Pfeffer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
9
|
Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Cheah PL, Chiew SF, Pathmanathan D, Bradley DA. A review: Exploring the metabolic and structural characterisation of beta pleated amyloid fibril in human tissue using Raman spectrometry and SAXS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00059-7. [PMID: 37307955 DOI: 10.1016/j.pbiomolbio.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Amyloidosis is a deleterious condition caused by abnormal amyloid fibril build-up in living tissues. To date, 42 proteins that are linked to amyloid fibrils have been discovered. Amyloid fibril structure variation can affect the severity, progression rate, or clinical symptoms of amyloidosis. Since amyloid fibril build-up is the primary pathological basis for various neurodegenerative illnesses, characterization of these deadly proteins, particularly utilising optical techniques have been a focus. Spectroscopy techniques provide significant non-invasive platforms for the investigation of the structure and conformation of amyloid fibrils, offering a wide spectrum of analyses ranging from nanometric to micrometric size scales. Even though this area of study has been intensively explored, there still remain aspects of amyloid fibrillization that are not fully known, a matter hindering progress in treating and curing amyloidosis. This review aims to provide recent updates and comprehensive information on optical techniques for metabolic and proteomic characterization of β-pleated amyloid fibrils found in human tissue with thorough literature analysis of publications. Raman spectroscopy and SAXS are well established experimental methods for study of structural properties of biomaterials. With suitable models, they offer extended information for valid proteomic analysis under physiologically relevant conditions. This review points to evidence that despite limitations, these techniques are able to provide for the necessary output and proteomics indication in order to extrapolate the aetiology of amyloid fibrils for reliable diagnostic purposes. Our metabolic database may also contribute to elucidating the nature and function of the amyloid proteome in development and clearance of amyloid diseases.
Collapse
Affiliation(s)
- N S Mohd Nor Ihsan
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S F Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - L M Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - P L Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S F Chiew
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharini Pathmanathan
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - D A Bradley
- Centre for Applied Physics and Radiation Technologies, Sunway University, 46150 PJ, Malaysia; Department of Physics, School of Mathematics & Physics, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
10
|
Kang L, Wang Q, Zhang L, Zou H, Gao J, Niu K, Jiang N. Recent Experimental Advances in Characterizing the Self-Assembly and Phase Behavior of Polypeptoids. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114175. [PMID: 37297308 DOI: 10.3390/ma16114175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Polypeptoids are a family of synthetic peptidomimetic polymers featuring N-substituted polyglycine backbones with large chemical and structural diversity. Their synthetic accessibility, tunable property/functionality, and biological relevance make polypeptoids a promising platform for molecular biomimicry and various biotechnological applications. To gain insight into the relationship between the chemical structure, self-assembly behavior, and physicochemical properties of polypeptoids, many efforts have been made using thermal analysis, microscopy, scattering, and spectroscopic techniques. In this review, we summarize recent experimental investigations that have focused on the hierarchical self-assembly and phase behavior of polypeptoids in bulk, thin film, and solution states, highlighting the use of advanced characterization tools such as in situ microscopy and scattering techniques. These methods enable researchers to unravel multiscale structural features and assembly processes of polypeptoids over a wide range of length and time scales, thereby providing new insights into the structure-property relationship of these protein-mimetic materials.
Collapse
Affiliation(s)
- Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hang Zou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Gao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Zech T, Schmutzler T, Noll DM, Appavou MS, Unruh T. Effect of Bromide on the Surfactant Stabilization Layer Density of Gold Nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2227-2237. [PMID: 35113578 DOI: 10.1021/acs.langmuir.1c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Some studies have speculated that the concentration of bromide ions plays a crucial role in the surfactant density surrounding gold nanorods (AuNR). Small-angle X-ray and neutron scattering (SAXS and SANS) experiments were conducted to analyze any influence the bromide ions might have on the stabilization layer and the aggregation behavior of the ligand CTAB molecules in general. The AuNR were immersed in solutions containing a fixed CTA+ concentration of 2 mM and varying bromide ion concentrations from 0 to 22 mM. A patchy AuNR stabilization shell at low bromide ion concentrations was found, contrary to previously published SANS studies on the AuNR stabilization shell. However, with increasing bromide ion concentration, the density of the stabilization shell increases asymptotically toward a closed/collapsed bilayer configuration. AuNR grown under similar conditions show higher anisotropy with larger bromide ion concentrations. Both results indicate that anisotropic growth strongly depends on a sufficiently dense stabilization layer established by high bromide ion concentrations.
Collapse
Affiliation(s)
- Tobias Zech
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Tilo Schmutzler
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| | - Dennis M Noll
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich, JCNS at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Tobias Unruh
- Insitute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
- Center for Nanoanalysis and Electron Microscopy (CENEM) and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
12
|
Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Venero DA, Qdemat A, Disch S, Jochum JK, Michels A, Bender P. Using small-angle scattering to guide functional magnetic nanoparticle design. NANOSCALE ADVANCES 2022; 4:1026-1059. [PMID: 36131777 PMCID: PMC9417585 DOI: 10.1039/d1na00482d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/15/2022] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.
Collapse
Affiliation(s)
- Dirk Honecker
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mathias Bersweiler
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Sergey Erokhin
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Dmitry Berkov
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Karine Chesnel
- Brigham Young University, Department of Physics and Astronomy Provo Utah 84602 USA
| | - Diego Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Asma Qdemat
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Sabrina Disch
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Johanna K Jochum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| | - Andreas Michels
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Philipp Bender
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| |
Collapse
|
13
|
Martel A, Gabel F. Time-resolved small-angle neutron scattering (TR-SANS) for structural biology of dynamic systems: Principles, recent developments, and practical guidelines. Methods Enzymol 2022; 677:263-290. [DOI: 10.1016/bs.mie.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Foglia F, Lyonnard S, Sakai VG, Berrod Q, Zanotti JM, Gebel G, Clancy AJ, McMillan PF. Progress in neutron techniques: towards improved polymer electrolyte membranes for energy devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:264005. [PMID: 33906172 DOI: 10.1088/1361-648x/abfc10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Design and implementation of advanced membrane formulations for selective transport of ions and molecular species are critical for creating the next generations of fuel cells and separation devices. It is necessary to understand the detailed transport mechanisms over time- and length-scales relevant to the device operation, both in laboratory models and in working systems under realistic operational conditions. Neutron scattering techniques including quasi-elastic neutron scattering, reflectivity and imaging are implemented at beamline stations at reactor and spallation source facilities worldwide. With the advent of new and improved instrument design, detector methodology, source characteristics and data analysis protocols, these neutron scattering techniques are emerging as a primary tool for research to design, evaluate and implement advanced membrane technologies for fuel cell and separation devices. Here we describe these techniques and their development and implementation at the ILL reactor source (Institut Laue-Langevin, Grenoble, France) and ISIS Neutron and Muon Spallation source (Harwell Science and Technology Campus, UK) as examples. We also mention similar developments under way at other facilities worldwide, and describe approaches such as combining optical with neutron Raman scattering and x-ray absorption with neutron imaging and tomography, and carrying out such experiments in specialised fuel cells designed to mimic as closely possible actualoperandoconditions. These experiments and research projects will play a key role in enabling and testing new membrane formulations for efficient and sustainable energy production/conversion and separations technologies.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Sandrine Lyonnard
- University Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France
| | - Victoria García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton OX11 0QX, United Kingdom
| | - Quentin Berrod
- University Grenoble Alpes, CNRS, CEA, IRIG-SyMMES, 38000 Grenoble, France
| | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin (CEA-CNRS), Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Gérard Gebel
- University Grenoble Alpes, CEA LITEN, 38000 Grenoble, France
| | - Adam J Clancy
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - Paul F McMillan
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| |
Collapse
|
15
|
Penttilä PA, Paajanen A, Ketoja JA. Combining scattering analysis and atomistic simulation of wood-water interactions. Carbohydr Polym 2020; 251:117064. [PMID: 33142616 DOI: 10.1016/j.carbpol.2020.117064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
Molecular-scale interactions between water and cellulose microfibril bundles in plant cell walls are not fully understood, despite their crucial role for many applications of plant biomass. Recent advances in X-ray and neutron scattering analysis allow more accurate interpretation of experimental data from wood cell walls. At the same time, microfibril bundles including hemicelluloses and water can be modelled at atomistic resolution. Computing scattering patterns from atomistic models enables a new, complementary approach to decipher some of the most fundamental questions at this level of the hierarchical cell wall structure. This article introduces studies related to moisture behavior of wood with small/wide-angle X-ray/neutron scattering and atomistic simulations, recent attempts to combine these two approaches, and perspectives and open questions for future research using this powerful combination. Finally, we discuss the opportunities of the combined method in relation to applications of lignocellulosic materials.
Collapse
Affiliation(s)
- Paavo A Penttilä
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland.
| | - Antti Paajanen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
| | - Jukka A Ketoja
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|