1
|
Bange L, Rahimzadeh A, Mukhina T, von Klitzing R, Hoffmann I, Schneck E. Small-Angle and Quasi-Elastic Neutron Scattering from Polydisperse Oligolamellar Vesicles Containing Glycolipids. J Phys Chem Lett 2025; 16:1327-1335. [PMID: 39873628 DOI: 10.1021/acs.jpclett.4c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Glycolipids are known to stabilize biomembrane multilayers through preferential sugar-sugar interactions that act as weak transient membrane cross-links. Here, we use small-angle and quasi-elastic neutron scattering on oligolamellar phospholipid vesicles containing defined glycolipid fractions in order to elucidate the influence of glycolipids on membrane mechanics and dynamics. Small-angle neutron scattering (SANS) reveals that the oligolamellar vesicles (OLVs) obtained by extrusion are polydisperse with regard to the number of lamellae, n, which renders the interpretation of the quasi-elastic neutron spin echo (NSE) data nontrivial. To overcome this problem, we propose a method to model the NSE data in a rigorous fashion based on the obtained histograms of n and on their q-dependent intensity-weighted contribution. This procedure yields meaningful values for the bending rigidity of individual lipid membranes and insights into the mechanical coupling between adjacent membrane lamellae including the effect of the glycolipids.
Collapse
Affiliation(s)
- Lukas Bange
- Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Amin Rahimzadeh
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Tetiana Mukhina
- Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Regine von Klitzing
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | | | - Emanuel Schneck
- Soft Matter Biophysics, Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
2
|
Jiang N, Yu T, Zhang M, Barrett BN, Sun H, Wang J, Luo Y, Sternhagen GL, Xuan S, Yuan G, Kelley EG, Qian S, Bonnesen PV, Hong K, Li D, Zhang D. Effect of Micellar Morphology on the Temperature-Induced Structural Evolution of ABC Polypeptoid Triblock Terpolymers into Two-Compartment Hydrogel Network. Macromolecules 2024; 57:6449-6464. [PMID: 39071044 PMCID: PMC11270984 DOI: 10.1021/acs.macromol.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/14/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
We investigated the temperature-dependent structural evolution of thermoreversible triblock terpolypeptoid hydrogels, namely poly(N-allyl glycine)-b-poly(N-methyl glycine)-b-poly(N-decyl glycine) (AMD), using small-angle neutron scattering (SANS) with contrast matching in conjunction with X-ray scattering and cryogenic transmission electron microscopy (cryo-TEM) techniques. At room temperature, A100M101D10 triblock terpolypeptoids self-assemble into core-corona-type spherical micelles in aqueous solution. Upon heating above the critical gelation temperature (T gel), SANS analysis revealed the formation of a two-compartment hydrogel network comprising distinct micellar cores composed of dehydrated A blocks and hydrophobic D blocks. At T ≳ T gel, the temperature-dependent dehydration of A block further leads to the gradual rearrangement of both A and D domains, forming well-ordered micellar network at higher temperatures. For AMD polymers with either longer D block or shorter A block, such as A101M111D21 and A43M92D9, elongated nonspherical micelles with a crystalline D core were observed at T < T gel. Although these enlarged crystalline micelles still undergo a sharp sol-to-gel transition upon heating, the higher aggregation number of chains results in the immediate association of the micelles into ordered aggregates at the initial stage, followed by a disruption of the spatial ordering as the temperature further increases. On the other hand, fiber-like structures were also observed for AMD with longer A block, such as A153M127D10, due to the crystallization of A domains. This also influences the assembly pathway of the two-compartment network. Our findings emphasize the critical impact of initial micellar morphology on the structural evolution of AMD hydrogels during the sol-to-gel transition, providing valuable insights for the rational design of thermoresponsive hydrogels with tunable network structures at the nanometer scale.
Collapse
Affiliation(s)
- Naisheng Jiang
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tianyi Yu
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Meng Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bailee N. Barrett
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Haofeng Sun
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Wang
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Luo
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Garrett L. Sternhagen
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sunting Xuan
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guangcui Yuan
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Elizabeth G. Kelley
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shuo Qian
- Neutron
Scattering Division and Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peter V. Bonnesen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dongcui Li
- Hua An Tang
Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Liyanage WLNC, Tang N, Dally RL, Quigley LJ, Buchanan CC, Shu GJ, Butch NP, Krycka K, Bleuel M, Borchers JA, Debeer-Schmitt L, Gilbert DA. Skyrmion lattice formation and destruction mechanisms probed with TR-SANS. NANOSCALE 2024; 16:10715-10726. [PMID: 38712993 DOI: 10.1039/d4nr00858h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Magnetic skyrmions are topologically protected, nanoscale whirls of the spin configuration that tend to form hexagonally ordered arrays. As a topologically non-trivial structure, the nucleation and annihilation of the skyrmion, as well as the interaction between skyrmions, varies from conventional magnetic systems. Recent works have suggested that the ordering kinetics in these materials occur over millisecond or longer timescales, which is unusually slow for magnetic dynamics. The current work investigates the skyrmion ordering kinetics, particularly during lattice formation and destruction, using time-resolved small angle neutron scattering (TR-SANS). Evaluating the time-resolved structure and intensity of the neutron diffraction pattern reveals the evolving real-space structure of the skyrmion lattice and the timeframe of the formation. Measurements were performed on three prototypical skyrmion materials: MnSi, (Fe,Co)Si, and Cu2OSeO3. To probe lattice formation and destruction kinetics, the systems were prepared in the stable skyrmion state, and then a square-wave magnetic field modulation was applied. The measurements show that the skyrmions quickly form ordered domains, with a significant distribution in lattice parameters, which then converge to the final structure; the results confirm the slow kinetics, with formation times between 10 ms and 99 ms. Comparisons are made between the measured formation times and the fundamental material properties, suggesting the ordering temperature, saturation magnetization and magnetocrystalline anisotropy may be driving the timeframes. Micromagnetic simulations were also performed and support a scaling of the kinetics with sample volume, a behavior which is caused by the reconciling of misaligned domains.
Collapse
Affiliation(s)
- W L N C Liyanage
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA.
| | - Nan Tang
- Materials Science Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Rebecca L Dally
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Lizabeth J Quigley
- Materials Science Department, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Guo-Jiun Shu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Department of Materials and Mineral Resources Engineering, Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Nicholas P Butch
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Kathryn Krycka
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Julie A Borchers
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Lisa Debeer-Schmitt
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dustin A Gilbert
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA.
- Materials Science Department, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Le Brun AP, Gilbert EP. Advances in sample environments for neutron scattering for colloid and interface science. Adv Colloid Interface Sci 2024; 327:103141. [PMID: 38631095 DOI: 10.1016/j.cis.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This review describes recent advances in sample environments across the full complement of applicable neutron scattering techniques to colloid and interface science. Temperature, pressure, flow, tensile testing, ultrasound, chemical reactions, IR/visible/UV light, confinement, humidity and electric and magnetic field application, as well as tandem X-ray methods, are all addressed. Consideration for material choices in sample environments and data acquisition methods are also covered as well as discussion of current and potential future use of machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
5
|
Zuo T, Han Z, Ma C, Xiao S, Lin X, Li Y, Wang F, He Y, He Z, Zhang J, Wang G, Cheng H. The multi-slit very small angle neutron scattering instrument at the China Spallation Neutron Source. J Appl Crystallogr 2024; 57:380-391. [PMID: 38596742 PMCID: PMC11001394 DOI: 10.1107/s1600576724000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/22/2024] [Indexed: 04/11/2024] Open
Abstract
A multi-slit very small angle neutron scattering (MS-VSANS) instrument has been finally accepted at the China Spallation Neutron Source (CSNS). It is the first spallation neutron source based VSANS instrument. MS-VSANS has a good signal-to-noise ratio and can cover a wide scattering vector magnitude range from 0.00028 to 1.4 Å-1. In its primary flight path, a combined curved multichannel beam bender and sections of rotary exchange drums are installed to minimize the background downstream of the instrument. An exchangeable multi-slit beam focusing system is integrated into the primary flight path, enabling access to a minimum scattering vector magnitude of 0.00028 Å-1. MS-VSANS has three modes, namely conventional SANS, polarizing SANS and VSANS modes. In the SANS mode, three motorized high-efficiency 3He tube detectors inside the detector tank cover scattering angles from 0.12 to 35° simultaneously. In the polarizing SANS mode, a double-V cavity provides highly polarized neutrons and a high-efficiency 3He polarization analyser allows full polarization analysis. In the VSANS mode, an innovative high-resolution gas electron multiplier detector covers scattering angles from 0.016 to 0.447°. The absolute scattering intensities of a selection of standard samples are obtained using the direct-beam technique; the effectiveness of this method is verified by testing the standard samples and comparing the results with those from a benchmark instrument. The MS-VSANS instrument is designed to be flexible and versatile and all the design goals have been achieved.
Collapse
Affiliation(s)
- Taisen Zuo
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Zehua Han
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Changli Ma
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Songwen Xiao
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Xiong Lin
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Yuqing Li
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Fangwei Wang
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
| | - Yongcheng He
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Zhenqiang He
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Junsong Zhang
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - Guangyuan Wang
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| | - He Cheng
- Spallation Neutron Source Science Center, Dongguan, 523803, People’s Republic of China
- Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Beijing, 100049, People’s Republic of China
| |
Collapse
|
6
|
Cho NH, Shi J, Murphy RP, Riley JK, Rogers SA, Richards JJ. Extracting microscopic insight from transient dielectric measurements during large amplitude oscillatory shear. SOFT MATTER 2023. [PMID: 37681714 DOI: 10.1039/d3sm00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Probing the transient microstructure of soft matter far from equilibrium is an ongoing challenge to understanding material processing. In this work, we investigate inverse worm-like micelles undergoing large amplitude oscillatory shear using time-resolved dielectric spectroscopy. By controlling the Weissenburg number, we compare the non-linear microstructure response of branched and unbranched worm-like micelles and isolate distinct elastic effects that manifest near flow reversal. We validate our dielectric measurements with small angle neutron scattering and employ sequence of physical processes to disentangle the elastic and viscous contributions of the stress.
Collapse
Affiliation(s)
- Noah H Cho
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| | - Jiachun Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois of Urbana-Champaign, Urbana, Illinois, USA
| | - Ryan P Murphy
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - John K Riley
- Performance Materials Coatings, The Dow Chemical Company, Collegeville, Pennsylvania, USA
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois of Urbana-Champaign, Urbana, Illinois, USA
| | - Jeffrey J Richards
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Nguyen MHL, Dziura D, DiPasquale M, Castillo SR, Kelley EG, Marquardt D. Investigating the cut-off effect of n-alcohols on lipid movement: a biophysical study. SOFT MATTER 2023. [PMID: 37357554 DOI: 10.1039/d2sm01583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like n-alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of n-alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, i.e. flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.
Collapse
Affiliation(s)
- Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
- Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
8
|
Allen AJ. Selected advances in small-angle scattering and applications they serve in manufacturing, energy and climate change. J Appl Crystallogr 2023; 56:787-800. [PMID: 37284276 PMCID: PMC10241057 DOI: 10.1107/s1600576723003898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Innovations in small-angle X-ray and neutron scattering (SAXS and SANS) at major X-ray and neutron facilities offer new characterization tools for researching materials phenomena relevant to advanced applications. For SAXS, the new generation of diffraction-limited storage rings, incorporating multi-bend achromat concepts, dramatically decrease electron beam emittance and significantly increase X-ray brilliance over previous third-generation sources. This results in intense X-ray incident beams that are more compact in the horizontal plane, allowing significantly improved spatial resolution, better time resolution, and a new era for coherent-beam SAXS methods such as X-ray photon correlation spectroscopy. Elsewhere, X-ray free-electron laser sources provide extremely bright, fully coherent, X-ray pulses of <100 fs and can support SAXS studies of material processes where entire SAXS data sets are collected in a single pulse train. Meanwhile, SANS at both steady-state reactor and pulsed spallation neutron sources has significantly evolved. Developments in neutron optics and multiple detector carriages now enable data collection in a few minutes for materials characterization over nanometre-to-micrometre scale ranges, opening up real-time studies of multi-scale materials phenomena. SANS at pulsed neutron sources is becoming more integrated with neutron diffraction methods for simultaneous structure characterization of complex materials. In this paper, selected developments are highlighted and some recent state-of-the-art studies discussed, relevant to hard matter applications in advanced manufacturing, energy and climate change.
Collapse
Affiliation(s)
- Andrew J. Allen
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
9
|
Spatially confined protein assembly in hierarchical mesoporous metal-organic framework. Nat Commun 2023; 14:973. [PMID: 36810582 PMCID: PMC9944321 DOI: 10.1038/s41467-023-36533-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Immobilization of biomolecules into porous materials could lead to significantly enhanced performance in terms of stability towards harsh reaction conditions and easier separation for their reuse. Metal-Organic Frameworks (MOFs), offering unique structural features, have emerged as a promising platform for immobilizing large biomolecules. Although many indirect methods have been used to investigate the immobilized biomolecules for diverse applications, understanding their spatial arrangement in the pores of MOFs is still preliminary due to the difficulties in directly monitoring their conformations. To gain insights into the spatial arrangement of biomolecules within the nanopores. We used in situ small-angle neutron scattering (SANS) to probe deuterated green fluorescent protein (d-GFP) entrapped in a mesoporous MOF. Our work revealed that GFP molecules are spatially arranged in adjacent nanosized cavities of MOF-919 to form "assembly" through adsorbate-adsorbate interactions across pore apertures. Our findings, therefore, lay a crucial foundation for the identification of proteins structural basics under confinement environment of MOFs.
Collapse
|
10
|
Nanoscale Bending Dynamics in Mixed-Chain Lipid Membranes. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lipids that have two tails of different lengths are found throughout biomembranes in nature, yet the effects of this asymmetry on the membrane properties are not well understood, especially when it comes to the membrane dynamics. Here we study the nanoscale bending fluctuations in model mixed-chain 14:0–18:0 PC (MSPC) and 18:0–14:0 PC (SMPC) lipid bilayers using neutron spin echo (NSE) spectroscopy. We find that despite the partial interdigitation that is known to persist in the fluid phase of these membranes, the collective fluctuations are enhanced on timescales of tens of nanoseconds, and the chain-asymmetric lipid bilayers are softer than an analogous chain-symmetric lipid bilayer with the same average number of carbons in the acyl tails, di-16:0 PC (DPPC). Quantitative comparison of the NSE results suggests that the enhanced bending fluctuations at the nanosecond timescales are consistent with experimental and computational studies that showed the compressibility moduli of chain-asymmetric lipid membranes are 20% to 40% lower than chain-symmetric lipid membranes. These studies add to growing evidence that the partial interdigitation in mixed-chain lipid membranes is highly dynamic in the fluid phase and impacts membrane dynamic processes from the molecular to mesoscopic length scales without significantly changing the bilayer thickness or area per lipid.
Collapse
|
11
|
Mettus D, Chacon A, Bauer A, Mühlbauer S, Pfleiderer C. Optimization strategies and artifacts of time-involved small-angle neutron scattering experiments. J Appl Crystallogr 2022; 55:1603-1612. [PMID: 36570666 PMCID: PMC9721328 DOI: 10.1107/s1600576722009931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Kinetic small-angle neutron scattering provides access to the microscopic properties of mesoscale systems under slow, periodic perturbations. By interlocking the phases of neutron pulse, sample modulation and detector signal, time-involved small-angle neutron scattering experiments (TISANE) allow one to exploit the neutron velocity spread and record data without major sacrifice in intensity at timescales down to microseconds. This article reviews the optimization strategies of TISANE that arise from specific aspects of the process of data acquisition and data analysis starting from the basic principles of operation. Typical artifacts of data recorded in TISANE due to the choice of time binning and neutron chopper pulse width are illustrated by virtue of the response of the skyrmion lattice in MnSi under periodic changes of the direction of the stabilizing magnetic field.
Collapse
Affiliation(s)
- Denis Mettus
- Physik Department, Technische Universität München, Garching, Germany,Correspondence e-mail:
| | - Alfonso Chacon
- Physik Department, Technische Universität München, Garching, Germany
| | - Andreas Bauer
- Physik Department, Technische Universität München, Garching, Germany,Centre for Quantum Engineering (ZQE), Technical University of Munich, D-85748 Garching, Germany
| | - Sebastian Mühlbauer
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching, Germany
| | - Christian Pfleiderer
- Physik Department, Technische Universität München, Garching, Germany,Centre for Quantum Engineering (ZQE), Technical University of Munich, D-85748 Garching, Germany,Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, D-85748 Garching, Germany
| |
Collapse
|
12
|
DiPasquale M, Nguyen MHL, Castillo SR, Dib IJ, Kelley EG, Marquardt D. Vitamin E Does Not Disturb Polyunsaturated Fatty Acid Lipid Domains. Biochemistry 2022; 61:2366-2376. [PMID: 36227768 DOI: 10.1021/acs.biochem.2c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The function of vitamin E in biomembranes remains a prominent topic of discussion. As its limitations as an antioxidant persist and novel functions are discovered, our understanding of the role of vitamin E becomes increasingly enigmatic. As a group of lipophilic molecules (tocopherols and tocotrienols), vitamin E has been shown to influence the properties of its host membrane, and a wealth of research has connected vitamin E to polyunsaturated fatty acid (PUFA) lipids. Here, we use contrast-matched small-angle neutron scattering and differential scanning calorimetry to integrate these fields by examining the influence of vitamin E on lipid domain stability in PUFA-based lipid mixtures. The influence of α-tocopherol, γ-tocopherol, and α-tocopherylquinone on the lateral organization of a 1:1 lipid mixture of saturated distearoylphosphatidylcholine (DSPC) and polyunsaturated palmitoyl-linoleoylphosphatidylcholine (PLiPC) with cholesterol provides a complement to our growing understanding of the influence of tocopherol on lipid phases. Characterization of domain melting suggests a slight depression in the transition temperature and a decrease in transition cooperativity. Tocopherol concentrations that are an order of magnitude higher than anticipated physiological concentrations (2 mol percent) do not significantly perturb lipid domains; however, addition of 10 mol percent is able to destabilize domains and promote lipid mixing. In contrast to this behavior, increasing concentrations of the oxidized product of α-tocopherol (α-tocopherylquinone) induces a proportional increase in domain stabilization. We speculate how the contrasting effect of the oxidized product may supplement the antioxidant response of vitamin E.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Isabelle J Dib
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20878, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada.,Department of Physics, University of Windsor, Windsor, OntarioN9B3P4, Canada
| |
Collapse
|
13
|
Dubackic M, Liu Y, Kelley EG, Hetherington C, Haertlein M, Devos JM, Linse S, Sparr E, Olsson U. α-Synuclein Interaction with Lipid Bilayer Discs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10216-10224. [PMID: 35952001 PMCID: PMC9404543 DOI: 10.1021/acs.langmuir.2c01368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
α-Synuclein (aSyn) is a 140 residue long protein present in presynaptic termini of nerve cells. The protein is associated with Parkinson's disease, in which case it has been found to self-assemble into long amyloid fibrils forming intracellular inclusions that are also rich in lipids. Furthermore, its synaptic function is proposed to involve interaction with lipid membranes, and hence, it is of interest to understand aSyn-lipid membrane interactions in detail. In this paper we report on the interaction of aSyn with model membranes in the form of lipid bilayer discs. Using a combination of cryogenic transmission electron microscopy and small-angle neutron scattering, we show that circular discs undergo a significant shape transition after the adsorption of aSyn. When aSyn self-assembles into fibrils, aSyn molecules desorb from the bilayer discs, allowing them to recover to their original shape. Interestingly, the desorption process has an all-or-none character, resulting in a binary coexistence of circular bilayer discs with no adsorbed aSyn and deformed bilayer discs having a maximum amount of adsorbed protein. The observed coexistence is consistent with the recent finding of cooperative aSyn adsorption to anionic lipid bilayers.
Collapse
Affiliation(s)
- Marija Dubackic
- Physical
Chemistry, Department of Chemistry, Lund
University, SE-22100 Lund, Sweden
| | - Yun Liu
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20878, United States
- Chemical
and Biomolecular Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth G. Kelley
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20878, United States
| | - Crispin Hetherington
- National
Center for High Resolution Electron Microscopy, Centre for Analysis
and Synthesis, Chemistry Centre, Lund University, SE-22100 Lund, Sweden
| | | | | | - Sara Linse
- Biochemistry
and Structural Biology, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Physical
Chemistry, Department of Chemistry, Lund
University, SE-22100 Lund, Sweden
| | - Ulf Olsson
- Physical
Chemistry, Department of Chemistry, Lund
University, SE-22100 Lund, Sweden
| |
Collapse
|
14
|
Majcher MJ, Himbert S, Vito F, Campea MA, Dave R, Vetergaard Jensen G, Rheinstadter MC, Smeets NMB, Hoare T. Investigating the Kinetics and Structure of Network Formation in Ultraviolet-Photopolymerizable Starch Nanogel Network Hydrogels via Very Small-Angle Neutron Scattering and Small-Amplitude Oscillatory Shear Rheology. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Majcher
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Sebastian Himbert
- Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Francesco Vito
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Matthew A. Campea
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Grethe Vetergaard Jensen
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States
| | - Maikel C. Rheinstadter
- Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Niels M. B. Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
15
|
Qian S, Heller W, Chen WR, Christianson A, Do C, Wang Y, Lin JYY, Huegle T, Jiang C, Boone C, Hart C, Graves V. CENTAUR-The small- and wide-angle neutron scattering diffractometer/spectrometer for the Second Target Station of the Spallation Neutron Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:075104. [PMID: 35922314 DOI: 10.1063/5.0090527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
CENTAUR has been selected as one of the eight initial instruments to be built at the Second Target Station (STS) of the Spallation Neutron Source at Oak Ridge National Laboratory. It is a small-angle neutron scattering (SANS) and wide-angle neutron scattering (WANS) instrument with diffraction and spectroscopic capabilities. This instrument will maximally leverage the high brightness of the STS source, the state-of-the-art neutron optics, and a suite of detectors to deliver unprecedented capabilities that enable measurements over a wide range of length scales with excellent resolution, measurements on smaller samples, and time-resolved investigations of evolving structures. Notably, the simultaneous WANS and diffraction capability will be unique among neutron scattering instruments in the United States. This instrument will provide much needed capabilities for soft matter and polymer sciences, geology, biology, quantum condensed matter, and other materials sciences that need in situ and operando experiments for kinetic and/or out-of-equilibrium studies. Beam polarization and a high-resolution chopper will enable detailed structural and dynamical investigations of magnetic and quantum materials. CENTAUR's excellent resolution makes it ideal for low-angle diffraction studies of highly ordered large-scale structures, such as skyrmions, shear-induced ordering in colloids, and biomembranes. Additionally, the spectroscopic mode of this instrument extends to lower momentum transfers than are currently possible with existing spectrometers, thereby providing a unique capability for inelastic SANS studies.
Collapse
Affiliation(s)
- Shuo Qian
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - William Heller
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Wei-Ren Chen
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | | | - Changwoo Do
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Yangyang Wang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jiao Y Y Lin
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Thomas Huegle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Chenyang Jiang
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Cristina Boone
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Cameron Hart
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Van Graves
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| |
Collapse
|
16
|
Pietras Z, Wood K, Whitten AE, Jeffries CM. Technical considerations for small-angle neutron scattering from biological macromolecules in solution: Cross sections, contrasts, instrument setup and measurement. Methods Enzymol 2022; 677:157-189. [DOI: 10.1016/bs.mie.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|