1
|
Hafner A, Costa L, Kourousias G, Bonanni V, Žižić M, Stolfa A, Bazi B, Vincze L, Gianoncelli A. An innovative in situ AFM system for a soft X-ray spectromicroscopy synchrotron beamline. Analyst 2024; 149:700-706. [PMID: 38054815 DOI: 10.1039/d3an01358h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Multimodal imaging and spectroscopy like concurrent scanning transmission X-ray microscopy (STXM) and X-ray fluorescence (XRF) are highly desirable as they allow retrieving complementary information. This paper reports on the design, development, integration and field testing of a novel in situ atomic force microscopy (AFM) instrument for operation under high vacuum in a synchrotron soft X-ray microscopy STXM-XRF end-station. A combination of μXRF and AFM is demonstrated for the first time in the soft X-ray regime, with an outlook for the full XRF-STXM-AFM combination.
Collapse
Affiliation(s)
- Aljoša Hafner
- Elettra Sincrotrone Trieste, SS 14 km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
| | - Luca Costa
- Centre de Biochimie Structurale, CNRS UMR 5048 - UM - INSERM U 1054, 29 rue de Navacelles 34090 Montpellier, France
| | - George Kourousias
- Elettra Sincrotrone Trieste, SS 14 km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
| | - Valentina Bonanni
- Elettra Sincrotrone Trieste, SS 14 km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
| | - Milan Žižić
- Elettra Sincrotrone Trieste, SS 14 km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
| | - Andrea Stolfa
- Elettra Sincrotrone Trieste, SS 14 km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
| | - Benjamin Bazi
- Department of Chemistry, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
| | - Laszlo Vincze
- Department of Chemistry, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
| | - Alessandra Gianoncelli
- Elettra Sincrotrone Trieste, SS 14 km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
| |
Collapse
|
2
|
Li Q, Marks SD, Bean S, Fisher M, Walko DA, DiChiara AD, Chen X, Imura K, Sato NK, Liu M, Evans PG, Wen H. Simultaneous scanning near-field optical and X-ray diffraction microscopy for correlative nanoscale structure-property characterization. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1790-1796. [PMID: 31490171 DOI: 10.1107/s1600577519008609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
A multimodal imaging instrument has been developed that integrates scanning near-field optical microscopy with nanofocused synchrotron X-ray diffraction imaging. The instrument allows for the simultaneous nanoscale characterization of electronic/near-field optical properties of materials together with their crystallographic structure, facilitating the investigation of local structure-property relationships. The design, implementation and operating procedures of this instrument are reported. The scientific capabilities are demonstrated in a proof-of-principle study of the insulator-metal phase transition in samarium sulfide (SmS) single crystals induced by applying mechanical pressure via a scanning tip. The multimodal imaging of an in situ tip-written region shows that the near-field optical reflectivity can be correlated with the heterogeneously transformed structure of the near-surface region of the crystal.
Collapse
Affiliation(s)
- Qian Li
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Samuel D Marks
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sunil Bean
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael Fisher
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Donald A Walko
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Anthony D DiChiara
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xinzhong Chen
- Department of Physics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Keiichiro Imura
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Noriaki K Sato
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Mengkun Liu
- Department of Physics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Paul G Evans
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
3
|
Gumí-Audenis B, Costa L, Carlá F, Comin F, Sanz F, Giannotti MI. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids. MEMBRANES 2016; 6:E58. [PMID: 27999368 PMCID: PMC5192414 DOI: 10.3390/membranes6040058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/17/2022]
Abstract
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.
Collapse
Affiliation(s)
- Berta Gumí-Audenis
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| | - Luca Costa
- Structure and Dynamics of Nucleoproteic and Membrane Assemblies, Centre de Biochimie Structurale (CBS), Montpellier 34090, France.
| | - Francesco Carlá
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
| | - Fabio Comin
- European Synchrotron Radiation Facility (ESRF), Grenoble 38043, France.
| | - Fausto Sanz
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| | - Marina I Giannotti
- Nanoprobes and Nanoswitches group, Institute for Bioengineering of Catalunya (IBEC), Barcelona 08028, Spain.
- Physical Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain.
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28028, Spain.
| |
Collapse
|