1
|
Levenstein MA, Chevallard C, Malloggi F, Testard F, Taché O. Micro- and milli-fluidic sample environments for in situ X-ray analysis in the chemical and materials sciences. LAB ON A CHIP 2025; 25:1169-1227. [PMID: 39775751 DOI: 10.1039/d4lc00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
X-ray-based methods are powerful tools for structural and chemical studies of materials and processes, particularly for performing time-resolved measurements. In this critical review, we highlight progress in the development of X-ray compatible microfluidic and millifluidic platforms that enable high temporal and spatial resolution X-ray analysis across the chemical and materials sciences. With a focus on liquid samples and suspensions, we first present the origins of microfluidic sample environments for X-ray analysis by discussing some alternative liquid sample holder and manipulator technologies. The bulk of the review is then dedicated to micro- and milli-fluidic devices designed for use in the three main areas of X-ray analysis: (1) scattering/diffraction, (2) spectroscopy, and (3) imaging. While most research to date has been performed at synchrotron radiation facilities, the recent progress made using commercial and laboratory-based X-ray instruments is then reviewed here for the first time. This final section presents the exciting possibility of performing in situ and operando X-ray analysis in the 'home' laboratory and transforming microfluidic and millifluidic X-ray analysis into a routine method in physical chemistry and materials research.
Collapse
Affiliation(s)
- Mark A Levenstein
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Switalski K, Fan J, Li L, Chu M, Sarnello E, Jemian P, Li T, Wang Q, Zhang Q. Direct measurement of Stokes-Einstein diffusion of Cowpea mosaic virus with 19 µs-resolved XPCS. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1429-1435. [PMID: 36345751 PMCID: PMC9641563 DOI: 10.1107/s1600577522008402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Brownian motion of Cowpea mosaic virus (CPMV) in water was measured using small-angle X-ray photon correlation spectroscopy (SA-XPCS) at 19.2 µs time resolution. It was found that the decorrelation time τ(Q) = 1/DQ2 up to Q = 0.091 nm-1. The hydrodynamic radius RH determined from XPCS using Stokes-Einstein diffusion D = kT/(6πηRH) is 43% larger than the geometric radius R0 determined from SAXS in the 0.007 M K3PO4 buffer solution, whereas it is 80% larger for CPMV in 0.5 M NaCl and 104% larger in 0.5 M (NH4)2SO4, a possible effect of aggregation as well as slight variation of the structures of the capsid resulting from the salt-protein interactions.
Collapse
Affiliation(s)
- Kacper Switalski
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60611, USA
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Luxi Li
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Pete Jemian
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
3
|
Otto F, Sun X, Schulz F, Sanchez-Cano C, Feliu N, Westermeier F, Parak WJ. X-Ray Photon Correlation Spectroscopy Towards Measuring Nanoparticle Diameters in Biological Environments Allowing for the In Situ Analysis of their Bio-Nano Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201324. [PMID: 35905490 DOI: 10.1002/smll.202201324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS), a synchrotron source-based technique to measure sample dynamics, is used to determine hydrodynamic diameters of gold nanoparticles (Au NPs) of different sizes in biological environments. In situ determined hydrodynamic diameters are benchmarked with values obtained by dynamic light scattering. The technique is then applied to analyze the behavior of the Au NPs in a biological environment. First, a concentration-dependent agglomeration in the presence of NaCl is determined. Second, concentration-dependent increase in hydrodynamic diameter of the Au NPs upon the presence of proteins is determined. As X-rays in the used energy range are barely scattered by biological matter, dynamics of the Au NPs can be also detected in situ in complex biological environments, such as blood. These measurements demonstrate the possibility of XPCS for in situ analytics of nanoparticles (NPs) in biological environments where similar detection techniques based on visible light would severely suffer from scattering, absorption, and reflection effects.
Collapse
Affiliation(s)
- Ferdinand Otto
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Xing Sun
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Hunan University, Lushan Road (S) 2, Changsha, 410012, P. R. China
| | - Florian Schulz
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Fraunhofer Center for Applied Nanotechnology (IAP-CAN), Grindelallee 117, 20146, Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
4
|
Campbell SI, Allan DB, Barbour AM, Olds D, Rakitin MS, Smith R, Wilkins SB. Outlook for artificial intelligence and machine learning at the NSLS-II. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abbd4e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
We describe the current and future plans for using artificial intelligence and machine learning (AI/ML) methods at the National Synchrotron Light Source II (NSLS-II), a scientific user facility at the Brookhaven National Laboratory. We discuss the opportunity for using the AI/ML tools and techniques developed in the data and computational science areas to greatly improve the scientific output of large scale experimental user facilities. We describe our current and future plans in areas including from detecting and recovering from faults, optimizing the source and instrument configurations, streamlining the pipeline from measurement to insight, through data acquisition, processing, analysis. The overall strategy and direction of the NSLS-II facility in relation to AI/ML is presented.
Collapse
|
5
|
Gerspach MA, Mojarad N, Sharma D, Pfohl T, Ekinci Y. Soft electrostatic trapping in nanofluidics. MICROSYSTEMS & NANOENGINEERING 2017; 3:17051. [PMID: 31057877 PMCID: PMC6444982 DOI: 10.1038/micronano.2017.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Trapping and manipulation of nano-objects in solution are of great interest and have emerged in a plethora of fields spanning from soft condensed matter to biophysics and medical diagnostics. We report on establishing a nanofluidic system for reliable and contact-free trapping as well as manipulation of charged nano-objects using elastic polydimethylsiloxane (PDMS)-based materials. This trapping principle is based on electrostatic repulsion between charged nanofluidic walls and confined charged objects, called geometry-induced electrostatic (GIE) trapping. With gold nanoparticles as probes, we study the performance of the devices by measuring the stiffness and potential depths of the implemented traps, and compare the results with numerical simulations. When trapping 100 nm particles, we observe potential depths of up to Q≅24 k B T that provide stable trapping for many days. Taking advantage of the soft material properties of PDMS, we actively tune the trapping strength and potential depth by elastically reducing the device channel height, which boosts the potential depth up to Q~200 k B T, providing practically permanent contact-free trapping. Due to a high-throughput and low-cost fabrication process, ease of use, and excellent trapping performance, our method provides a reliable platform for research and applications in study and manipulation of single nano-objects in fluids.
Collapse
Affiliation(s)
- Michael A. Gerspach
- Swiss Nanoscience Institute, Basel 4056, Switzerland
- Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, Villigen 5232, Switzerland
- Chemistry Department, University of Basel, Basel 4056, Switzerland
| | - Nassir Mojarad
- Nanotechnology Group, ETH Zürich, Rüschlikon 8803, Switzerland
| | - Deepika Sharma
- Swiss Nanoscience Institute, Basel 4056, Switzerland
- Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, Villigen 5232, Switzerland
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Thomas Pfohl
- Swiss Nanoscience Institute, Basel 4056, Switzerland
- Chemistry Department, University of Basel, Basel 4056, Switzerland
- Biomaterials Science Center, University of Basel, Allschwil 4123, Switzerland
| | - Yasin Ekinci
- Swiss Nanoscience Institute, Basel 4056, Switzerland
- Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, Villigen 5232, Switzerland
| |
Collapse
|