1
|
Chauvin C, Palma de Barros D, Delaunay A, De Rességuier T. Coupling a gas gun with an X-pinch x-ray source to perform x-ray diffraction under shock loading. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:043903. [PMID: 40249257 DOI: 10.1063/5.0245052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025]
Abstract
X-ray diffraction is an appropriate technique to probe crystalline materials and better understand their response under shock loading, particularly when they experience phase transition. This technique was already used at various large-scale facilities. Here, we present an alternative way to perform x-ray diffraction under shock loading at the laboratory scale by coupling an X-pinch x-ray generator with a single stage gas gun. This x-ray source is capable of generating a single polychromatic x-ray flash shorter than 100 ns. Preliminary static diffraction tests gave promising results, and then, an experimental apparatus was set up to perform in situ x-ray diffraction in a shock-loaded material. X-ray diffraction is performed in reflection at the interface between the studied sample and an anvil window to ensure a homogeneous pressure state within the probed region. A specific target configuration was designed to synchronize the x-ray emission with the temporary shocked state. The synchronization is achieved by the use of a trigger chain whose adjustable delay is chosen prior to the experiment based on the expected travel time of the shock wave throughout the target. The technique was successfully used to investigate the solid-solid phase transition of tin between β and γ phases. Results indicate a satisfying synchronization between the shock wave arrival and the x-ray emission. Diffractograms under shock loading show a disappearance of the static ambient figure (parent phase) and the development of a new diffraction pattern (daughter phase).
Collapse
Affiliation(s)
- C Chauvin
- CEA, DAM, Gramat, F-46500 Gramat, France
| | | | - A Delaunay
- CEA, DAM, Gramat, F-46500 Gramat, France
| | - T De Rességuier
- Institut Pprime, CNRS, ENSMA, Université de Poitiers, 86961 Futuroscope, France
| |
Collapse
|
2
|
Sévelin-Radiguet N, Torchio R, Berruyer G, Gonzalez H, Pasternak S, Perrin F, Occelli F, Pépin C, Sollier A, Kraus D, Schuster A, Voigt K, Zhang M, Amouretti A, Boury A, Fiquet G, Guyot F, Harmand M, Borri M, Groves J, Helsby W, Branly S, Norby J, Pascarelli S, Mathon O. Towards a dynamic compression facility at the ESRF. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:167-179. [PMID: 34985434 PMCID: PMC8733990 DOI: 10.1107/s1600577521011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Results of the 2018 commissioning and experimental campaigns of the new High Power Laser Facility on the Energy-dispersive X-ray Absorption Spectroscopy (ED-XAS) beamline ID24 at the ESRF are presented. The front-end of the future laser, delivering 15 J in 10 ns, was interfaced to the beamline. Laser-driven dynamic compression experiments were performed on iron oxides, iron alloys and bismuth probed by online time-resolved XAS.
Collapse
Affiliation(s)
- Nicolas Sévelin-Radiguet
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Raffaella Torchio
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Gilles Berruyer
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Hervé Gonzalez
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Sébastien Pasternak
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Florian Perrin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Florent Occelli
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - Charles Pépin
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - Arnaud Sollier
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - Dominik Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23–24, 18059 Rostock, Germany
| | - Anja Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Katja Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Min Zhang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, People’s Republic of China
| | - Alexis Amouretti
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | - Antoine Boury
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | - Guillaume Fiquet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | - Marion Harmand
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 – Sorbonne Université/CNRS/MNHN/IRD, 75252 Paris, France
| | | | - Janet Groves
- STFC, Daresbury Laboratory, Warrington, United Kingdom
| | | | - Stéphane Branly
- Amplitude Technologies, 2–4 Rue du Bois Chaland, CE 2926, 91029 Évry, France
| | - James Norby
- Amplitude Technologies, 2–4 Rue du Bois Chaland, CE 2926, 91029 Évry, France
| | - Sakura Pascarelli
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Olivier Mathon
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| |
Collapse
|
3
|
Chen XH, Xue T, Tan BZ, Li XY, Li J. Iterative diffraction pattern retrieval from a single focal construct geometry image. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721009626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Understanding the crystal structure of materials under extreme conditions of pressure and temperature has been revolutionized by major advances in laser-driven dynamic compression and in situ X-ray diffraction (XRD) technology. Instead of the well known Debye–Scherrer configuration, the focal construct geometry (FCG) was introduced to produce high-intensity diffraction data from laser-based in situ XRD experiments without increasing the amount of laser energy, but the resulting reflections suffered from profoundly asymmetrical broadening, leading to inaccuracy in determination of the crystal structure. Inspired by fast-neutron energy spectrum measurements, proposed here is an iterative retrieval method for recovering diffraction data from a single FCG image. This iterative algorithm restores both the peak shape and relative intensity with rapid convergence and requires no prior knowledge about the expected diffraction pattern, allowing the FCG to increase the in situ XRD intensity while simultaneously preserving the angular resolution. The feasibility and validity of the method are shown by successful recovery of the diffraction pattern from both a single simulated FCG image and a single laser-based nanosecond XRD measurement.
Collapse
|
4
|
Cerantola V, Rosa AD, Konôpková Z, Torchio R, Brambrink E, Rack A, Zastrau U, Pascarelli S. New frontiers in extreme conditions science at synchrotrons and free electron lasers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:274003. [PMID: 33930892 DOI: 10.1088/1361-648x/abfd50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Synchrotrons and free electron lasers are unique facilities to probe the atomic structure and electronic properties of matter at extreme thermodynamical conditions. In this context, 'matter at extreme pressures and temperatures' was one of the science drivers for the construction of low emittance 4th generation synchrotron sources such as the Extremely Brilliant Source of the European Synchrotron Radiation Facility and hard x-ray free electron lasers, such as the European x-ray free electron laser. These new user facilities combine static high pressure and dynamic shock compression experiments to outstanding high brilliance and submicron beams. This combination not only increases the data-quality but also enlarges tremendously the accessible pressure, temperature and density space. At the same time, the large spectrum of available complementary x-ray diagnostics for static and shock compression studies opens unprecedented insights into the state of matter at extremes. The article aims at highlighting a new horizon of scientific opportunities based on the synergy between extremely brilliant synchrotrons and hard x-ray free electron lasers.
Collapse
Affiliation(s)
- Valerio Cerantola
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Zuzana Konôpková
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Raffaella Torchio
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Erik Brambrink
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexander Rack
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Ulf Zastrau
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sakura Pascarelli
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
5
|
Potemkin FV, Mareev EI, Garmatina AA, Nazarov MM, Fomin EA, Stirin AI, Korchuganov VN, Kvardakov VV, Gordienko VM, Panchenko VY, Kovalchuk MM. Hybrid x-ray laser-plasma/laser-synchrotron facility for pump-probe studies of the extreme state of matter at NRC "Kurchatov Institute". THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:053101. [PMID: 34243278 DOI: 10.1063/5.0028228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/17/2021] [Indexed: 06/13/2023]
Abstract
We developed a hybrid optical pump-x-ray probe facility based on the "Kurchatov's synchrotron radiation source" and terawatt (TW) femtosecond laser. The bright x-ray photon source is based on either synchrotron radiation [up to 6 × 1014 photons/(s mm2 mrad2 0.1% bandwidth)] or laser-plasma generators (up to 108 photons/sr/pulse). The terawatt (TW) femtosecond laser pulse initiated phase transitions and a non-stationary "extreme" state of matter, while the delayed x-ray pulse acts as a probe. The synchronization between synchrotron radiation and laser pulses is achieved at 60.3 MHz using an intelligent field-programmable gate array-based phased locked loop. The timing jitter of the system is less than 30 ps. In laser-plasma sources, the x-ray and laser pulses are automatically synchronized because they are produced by using the same laser source (TW laser system). We have reached an x-ray yield of about 106 photons/sr/pulse with 6-mJ sub-ps laser pulses and using helium as a local gas medium. Under vacuum conditions, the laser energy increase up to 40 mJ leads to the enhancement of the x-ray yield of up to 108 photons/sr/pulse. The developed hybrid facility paves the way for a new class of time-resolved x-ray optical pump-probe experiments in the time interval from femtoseconds to microseconds and the energy spectrum from 3 to 30 keV.
Collapse
Affiliation(s)
- Fedor V Potemkin
- Faculty of Physics and International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny I Mareev
- Faculty of Physics and International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alena A Garmatina
- Institute of Photonic Technologies, FSKC "Crystallography and Photonics," Russian Academy of Sciences, Troitsk 119333, Russia
| | - Maxim M Nazarov
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia
| | - Evgeniy A Fomin
- National Research Centre "Kurchatov Institute," Moscow 123182, Russia
| | | | | | | | - Viacheslav M Gordienko
- Faculty of Physics and International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladislav Ya Panchenko
- Institute of Photonic Technologies, FSKC "Crystallography and Photonics," Russian Academy of Sciences, Troitsk 119333, Russia
| | | |
Collapse
|
6
|
Denoeud A, Hernandez JA, Vinci T, Benuzzi-Mounaix A, Brygoo S, Berlioux A, Lefevre F, Sollier A, Videau L, Ravasio A, Guarguaglini M, Duthoit L, Loison D, Brambrink E. X-ray powder diffraction in reflection geometry on multi-beam kJ-type laser facilities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013902. [PMID: 33514214 DOI: 10.1063/5.0020261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
An ultrafast x-ray powder diffraction setup for laser-driven dynamic compression has been developed at the LULI2000 laser facility. X-ray diffraction is performed in reflection geometry from a quasi-monochromatic laser-generated plasma x-ray source. In comparison to a transmission geometry setup, this configuration allows us to probe only a small portion of the compressed sample, as well as to shield the detectors against the x-rays generated by the laser-plasma interaction on the front side of the target. Thus, this new platform facilitates probing of spatially and temporarily uniform thermodynamic conditions and enables us to study samples of a large range of atomic numbers, thicknesses, and compression dynamics. As a proof-of-concept, we report direct structural measurements of the bcc-hcp transition both in shock and ramp-compressed polycrystalline iron with diffraction signals recorded between 2θ ∼ 30° and ∼150°. In parallel, the pressure and temperature history of probed samples is measured by rear-side visible diagnostics (velocimetry and pyrometry).
Collapse
Affiliation(s)
- A Denoeud
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - J-A Hernandez
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - T Vinci
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - A Benuzzi-Mounaix
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - S Brygoo
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - A Berlioux
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - F Lefevre
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - A Sollier
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - L Videau
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - A Ravasio
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - M Guarguaglini
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - L Duthoit
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - D Loison
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
| | - E Brambrink
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|
7
|
Tang MX, Huang JW, E JC, Zhang YY, Luo SN. Full strain tensor measurements with X-ray diffraction and strain field mapping: a simulation study. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:646-652. [PMID: 32381764 PMCID: PMC7285688 DOI: 10.1107/s1600577520003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Strain tensor measurements are important for understanding elastic and plastic deformation, but full bulk strain tensor measurement techniques are still lacking, in particular for dynamic loading. Here, such a methodology is reported, combining imaging-based strain field mapping and simultaneous X-ray diffraction for four typical loading modes: one-dimensional strain/stress compression/tension. Strain field mapping resolves two in-plane principal strains, and X-ray diffraction analysis yields volumetric strain, and thus the out-of-plane principal strain. This methodology is validated against direct molecular dynamics simulations on nanocrystalline tantalum. This methodology can be implemented with simultaneous X-ray diffraction and digital image correlation in synchrotron radiation or free-electron laser experiments.
Collapse
Affiliation(s)
- M. X. Tang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People’s Republic of China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and Institute of Material Dynamics, Southwest Jiaotong University, Chengdu, Sichuan 610031, People’s Republic of China
| | - J. W. Huang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People’s Republic of China
| | - J. C. E
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Y. Y. Zhang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People’s Republic of China
| | - S. N. Luo
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, People’s Republic of China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, and Institute of Material Dynamics, Southwest Jiaotong University, Chengdu, Sichuan 610031, People’s Republic of China
| |
Collapse
|
8
|
Takagi S, Ichiyanagi K, Kyono A, Nozawa S, Kawai N, Fukaya R, Funamori N, Adachi SI. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd:glass laser system. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:371-377. [PMID: 32153275 DOI: 10.1107/s1600577519016084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The combination of high-power laser and synchrotron X-ray pulses allows us to observe material responses under shock compression and release states at the crystal structure on a nanosecond time scale. A higher-power Nd:glass laser system for laser shock experiments was installed as a shock driving source at the NW14A beamline of PF-AR, KEK, Japan. It had a maximum pulse energy of 16 J, a pulse duration of 12 ns and a flat-top intensity profile on the target position. The shock-induced deformation dynamics of polycrystalline aluminium was investigated using synchrotron-based time-resolved X-ray diffraction (XRD) under laser-induced shock. The shock pressure reached up to about 17 GPa with a strain rate of at least 4.6 × 107 s-1 and remained there for nanoseconds. The plastic deformation caused by the shock-wave loading led to crystallite fragmentation. The preferred orientation of the polycrystalline aluminium remained essentially unchanged during the shock compression and release processes in this strain rate. The newly established time-resolved XRD experimental system can provide useful information for understanding the complex dynamic compression and release behaviors.
Collapse
Affiliation(s)
- Sota Takagi
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kouhei Ichiyanagi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Atsushi Kyono
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobuaki Kawai
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Ryo Fukaya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobumasa Funamori
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
9
|
Burian M, Marmiroli B, Radeticchio A, Morello C, Naumenko D, Biasiol G, Amenitsch H. Picosecond pump-probe X-ray scattering at the Elettra SAXS beamline. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:51-59. [PMID: 31868736 PMCID: PMC6927520 DOI: 10.1107/s1600577519015728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A new setup for picosecond pump-probe X-ray scattering at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste is presented. A high-power/high-repetion-rate laser has been installed on-site, delivering UV/VIS/IR femtosecond-pulses in-sync with the storage ring. Data acquisition is achieved by gating a multi-panel detector, capable of discriminating the single X-ray pulse in the dark-gap of the Elettra hybrid filling mode. Specific aspects of laser- and detection-synchronization, on-line beam steering as well protocols for spatial and temporal overlap of laser and X-ray beam are also described. The capabilities of the setup are demonstrated by studying transient heat-transfer in an In/Al/GaAs superlattice structure and results are confirmed by theoretical calculations.
Collapse
Affiliation(s)
- Max Burian
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Andrea Radeticchio
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Christian Morello
- Elettra-Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, Basovizza, TS 34149, Italy
| | - Denys Naumenko
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Giorgio Biasiol
- Laboratorio TASC, CNR-IOM at Area Science Park, Strada Statale 14, km 163.5, Basovizza, TS 34149, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| |
Collapse
|