1
|
Novinec L, Pancaldi M, Capotondi F, De Ninno G, Guzzi F, Kourousias G, Pedersoli E, Ressel B, Rösner B, Simoncig A, Zangrando M, Manfredda M. New achievements in orbital angular momentum beam characterization using a Hartmann wavefront sensor and the Kirkpatrick-Baez active optical system KAOS. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1058-1066. [PMID: 39150680 PMCID: PMC11371050 DOI: 10.1107/s160057752400626x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick-Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions.
Collapse
Affiliation(s)
- Luka Novinec
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
- Laboratory of Quantum OpticsUniversity of Nova GoricaNova GoricaSlovenia
| | - Matteo Pancaldi
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
| | - Flavio Capotondi
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
| | - Giovanni De Ninno
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
- Laboratory of Quantum OpticsUniversity of Nova GoricaNova GoricaSlovenia
| | - Francesco Guzzi
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
| | - George Kourousias
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
| | - Emanuele Pedersoli
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
| | - Barbara Ressel
- Laboratory of Quantum OpticsUniversity of Nova GoricaNova GoricaSlovenia
| | | | - Alberto Simoncig
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
| | - Marco Zangrando
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
- CNR-IOM – Instituto Officina dei Materiali, Trieste, Italy
| | - Michele Manfredda
- Elettra Sincrotrone TriesteStrada Statale 14 – km 163,5 in AREA Science ParkBasovizzaTriesteItaly
| |
Collapse
|
2
|
Pancaldi M, Strüber C, Friedrich B, Pedersoli E, De Angelis D, Nikolov IP, Manfredda M, Foglia L, Yulin S, Spezzani C, Sacchi M, Eisebitt S, von Korff Schmising C, Capotondi F. The COMIX polarimeter: a compact device for XUV polarization analysis. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:969-977. [PMID: 35787562 PMCID: PMC9255573 DOI: 10.1107/s1600577522004027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
We report on the characterization of a novel extreme-ultraviolet polarimeter based on conical mirrors to simultaneously detect all the components of the electric field vector for extreme-ultraviolet radiation in the 45-90 eV energy range. The device has been characterized using a variable polarization source at the Elettra synchrotron, showing good performance in the ability to determine the radiation polarization. Furthermore, as a possible application of the device, Faraday spectroscopy and time-resolved experiments have been performed at the Fe M2,3-edge on an FeGd ferrimagnetic thin film using the FERMI free-electron laser source. The instrument is shown to be able to detect the small angular variation induced by an optical external stimulus on the polarization state of the light after interaction with magnetic thin film, making the device an appealing tool for magnetization dynamics research.
Collapse
Affiliation(s)
| | - Christian Strüber
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bertram Friedrich
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | | | | | | | | - Laura Foglia
- Elettra-Sincrotrone Trieste SCpA, 34149 Basovizza, Italy
| | - Sergiy Yulin
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany
| | - Carlo Spezzani
- Elettra-Sincrotrone Trieste SCpA, 34149 Basovizza, Italy
| | - Maurizio Sacchi
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Stefan Eisebitt
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | | | | |
Collapse
|
3
|
Simoncig A, Manfredda M, Rösner B, Mahne N, Raimondi L, Capotondi F, Pedersoli E, De Ninno G, Parisse P, Zangrando M. Tomography of a seeded free-electron laser focal spot: qualitative and quantitative comparison of two reconstruction methods for spot size characterization. OPTICS EXPRESS 2021; 29:36086-36099. [PMID: 34809028 DOI: 10.1364/oe.430388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022]
Abstract
Performing experiments at free-electron lasers (FELs) requires an exhaustive knowledge of the pulse temporal and spectral profile, as well as the focal spot shape and size. Operating FELs in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral regions calls for designing ad-hoc optical layouts to transport and characterize the EUV/SXR beam, as well as tailoring its spatial dimensions at the focal plane down to sizes in the few micrometers range. At the FERMI FEL (Trieste, Italy) this task is carried out by the Photon Analysis Delivery and Reduction System (PADReS). In particular, to meet the different experimental requests on the focal spot shape and size, a proper tuning of the optical systems is required, and this should be monitored by means of dedicated techniques. Here, we present and compare two reconstruction methods for spot characterization: single-shot imprints captured via ablation on a poly(methyl methacrylate) sample (PMMA) and pulse profiles retrieved by means of a Hartmann wavefront sensor (WFS). By recording complementary datasets at and nearby the focal plane, we exploit the tomography of the pulse profile along the beam propagation axis, as well as a qualitative and quantitative comparison between these two reconstruction methods.
Collapse
|
4
|
Michiels R, Abu-Samha M, Madsen LB, Binz M, Bangert U, Bruder L, Duim R, Wituschek A, LaForge AC, Squibb RJ, Feifel R, Callegari C, Di Fraia M, Danailov M, Manfredda M, Plekan O, Prince KC, Rebernik P, Zangrando M, Stienkemeier F, Mudrich M. Enhancement of Above Threshold Ionization in Resonantly Excited Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2021; 127:093201. [PMID: 34506185 DOI: 10.1103/physrevlett.127.093201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Clusters and nanodroplets hold the promise of enhancing high-order nonlinear optical effects due to their high local density. However, only moderate enhancement has been demonstrated to date. Here, we report the observation of energetic electrons generated by above-threshold ionization (ATI) of helium (He) nanodroplets which are resonantly excited by ultrashort extreme ultraviolet (XUV) free-electron laser pulses and subsequently ionized by near-infrared (NIR) or near-ultraviolet (UV) pulses. The electron emission due to high-order ATI is enhanced by several orders of magnitude compared with He atoms. The crucial dependence of the ATI intensities with the number of excitations in the droplets suggests a local collective enhancement effect.
Collapse
Affiliation(s)
- R Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - M Abu-Samha
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - L B Madsen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - M Binz
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - U Bangert
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - L Bruder
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - R Duim
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - A Wituschek
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - A C LaForge
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - R J Squibb
- Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| | - R Feifel
- Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| | - C Callegari
- Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - M Di Fraia
- Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - M Danailov
- Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - M Manfredda
- Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - O Plekan
- Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - K C Prince
- Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - P Rebernik
- Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - M Zangrando
- Elettra-Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
- IOM-CNR, 34149 Trieste, Italy
| | - F Stienkemeier
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Asmussen JD, Michiels R, Dulitz K, Ngai A, Bangert U, Barranco M, Binz M, Bruder L, Danailov M, Di Fraia M, Eloranta J, Feifel R, Giannessi L, Pi M, Plekan O, Prince KC, Squibb RJ, Uhl D, Wituschek A, Zangrando M, Callegari C, Stienkemeier F, Mudrich M. Unravelling the full relaxation dynamics of superexcited helium nanodroplets. Phys Chem Chem Phys 2021; 23:15138-15149. [PMID: 34259254 DOI: 10.1039/d1cp01041g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relaxation dynamics of superexcited superfluid He nanodroplets is thoroughly investigated by means of extreme-ultraviolet (XUV) femtosecond electron and ion spectroscopy complemented by time-dependent density functional theory (TDDFT). Three main paths leading to the emission of electrons and ions are identified: droplet autoionization, pump-probe photoionization, and autoionization induced by re-excitation of droplets relaxing into levels below the droplet ionization threshold. The most abundant product ions are He2+, generated by droplet autoionization and by photoionization of droplet-bound excited He atoms. He+ appear with some pump-probe delay as a result of the ejection He atoms in their lowest excited states from the droplets. The state-resolved time-dependent photoelectron spectra reveal that intermediate excited states of the droplets are populated in the course of the relaxation, terminating in the lowest-lying metastable singlet and triplet He atomic states. The slightly faster relaxation of the triplet state compared to the singlet state is in agreement with the simulation showing faster formation of a bubble around a He atom in the triplet state.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | | | - Katrin Dulitz
- Institute of Physics, University of Freiburg, Germany
| | - Aaron Ngai
- Institute of Physics, University of Freiburg, Germany
| | | | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Marcel Binz
- Institute of Physics, University of Freiburg, Germany
| | - Lukas Bruder
- Institute of Physics, University of Freiburg, Germany
| | | | | | - Jussi Eloranta
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, CA 91330, USA
| | | | - Luca Giannessi
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Marti Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Oksana Plekan
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Kevin C Prince
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | | | - Daniel Uhl
- Institute of Physics, University of Freiburg, Germany
| | | | - Marco Zangrando
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain and CNR-IOM, Elettra-Sincrotrone Trieste S.C.p.A., Italy
| | - Carlo Callegari
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | | | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, Denmark.
| |
Collapse
|
6
|
Li W, Kang C, Guan H, Huang S, Zhao J, Zhou X, Li J. Deep Learning Correction Algorithm for The Active Optics System. SENSORS 2020; 20:s20216403. [PMID: 33182516 PMCID: PMC7665141 DOI: 10.3390/s20216403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022]
Abstract
The correction of wavefront aberration plays a vital role in active optics. The traditional correction algorithms based on the deformation of the mirror cannot effectively deal with disturbances in the real system. In this study, a new algorithm called deep learning correction algorithm (DLCA) is proposed to compensate for wavefront aberrations and improve the correction capability. The DLCA consists of an actor network and a strategy unit. The actor network is utilized to establish the mapping of active optics systems with disturbances and provide a search basis for the strategy unit, which can increase the search speed; The strategy unit is used to optimize the correction force, which can improve the accuracy of the DLCA. Notably, a heuristic search algorithm is applied to reduce the search time in the strategy unit. The simulation results show that the DLCA can effectively improve correction capability and has good adaptability. Compared with the least square algorithm (LSA), the algorithm we proposed has better performance, indicating that the DLCA is more accurate and can be used in active optics. Moreover, the proposed approach can provide a new idea for further research of active optics.
Collapse
Affiliation(s)
- Wenxiang Li
- Nanjing Astronomical Instruments Research Center, University of Science and Technology of China, Hefei 230026, China; (W.L.); (C.K.); (H.G.)
| | - Chao Kang
- Nanjing Astronomical Instruments Research Center, University of Science and Technology of China, Hefei 230026, China; (W.L.); (C.K.); (H.G.)
| | - Hengrui Guan
- Nanjing Astronomical Instruments Research Center, University of Science and Technology of China, Hefei 230026, China; (W.L.); (C.K.); (H.G.)
| | - Shen Huang
- CAS Nanjing Astronomical Instruments Co., Ltd., Nanjing 210042, China; (S.H.); (J.Z.); (J.L.)
| | - Jinbiao Zhao
- CAS Nanjing Astronomical Instruments Co., Ltd., Nanjing 210042, China; (S.H.); (J.Z.); (J.L.)
| | - Xiaojun Zhou
- Nanjing Astronomical Instruments Research Center, University of Science and Technology of China, Hefei 230026, China; (W.L.); (C.K.); (H.G.)
- CAS Nanjing Astronomical Instruments Co., Ltd., Nanjing 210042, China; (S.H.); (J.Z.); (J.L.)
- Correspondence:
| | - Jinpeng Li
- CAS Nanjing Astronomical Instruments Co., Ltd., Nanjing 210042, China; (S.H.); (J.Z.); (J.L.)
| |
Collapse
|
7
|
Sala S, Daurer BJ, Odstrcil M, Capotondi F, Pedersoli E, Hantke MF, Manfredda M, Loh ND, Thibault P, Maia FRNC. Pulse-to-pulse wavefront sensing at free-electron lasers using ptychography. J Appl Crystallogr 2020; 53:949-956. [PMID: 32788902 PMCID: PMC7401787 DOI: 10.1107/s1600576720006913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/22/2020] [Indexed: 11/14/2022] Open
Abstract
The pressing need for knowledge of the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers has spurred the development of several complementary characterization approaches. Here a method based on ptychography is presented that can retrieve high-resolution complex-valued wavefunctions of individual pulses without strong constraints on the illumination or sample object used. The technique is demonstrated within experimental conditions suited for diffraction experiments and exploiting Kirkpatrick-Baez focusing optics. This lensless technique, applicable to many other short-pulse instruments, can achieve diffraction-limited resolution.
Collapse
Affiliation(s)
- Simone Sala
- Department of Physics and Astronomy, University College London, London, UK
- Department of Physics and Astronomy, University of Southampton, Southampton, UK
| | - Benedikt J. Daurer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | - Max F. Hantke
- Department of Chemistry, Oxford University, Oxford, UK
| | | | - N. Duane Loh
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore
| | - Pierre Thibault
- Department of Physics and Astronomy, University of Southampton, Southampton, UK
| | | |
Collapse
|
8
|
Manfredda M, Raimondi L, Mahne N, Zangrando M. Focal shift induced by source displacements and optical figure errors. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1503-1513. [PMID: 31490138 DOI: 10.1107/s1600577519010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
In this work the longitudinal shifts of the focal plane of an ellipsoidal mirror induced by longitudinal shifts of the source and by the optical figure error of the mirror itself are investigated. The case of an ideal mirror illuminated by a Gaussian beam is considered first, deriving an analytical formula predicting the source-to-focus shift. Then the realistic case of a mirror affected by surface shape defects is examined, by taking into account metrological data and numerically solving the Huygens-Fresnel integral. The analytical and numerical solutions in the ideal and real cases are compared. Finally, it is shown that an additional dependence of the focal shift is introduced on the wavelength and the pointing angle of the source. Both effects are investigated by numerical computations. We limit the treatment in the XUV spectral range, choosing as a test bench the Kirkpatrick-Baez mirror system of the DiProI and LDM end-stations and at the FERMI seeded free-electron laser (FEL). The work is primarily aimed at disentangling the different causes of focal shift at FEL light sources, where source position, wavelength and pointing angle are either tunable or rapidly fluctuating. The method can be easily extended to parabolic reflectors and refractors (lenses) with other kinds of illuminating sources and wavelengths.
Collapse
Affiliation(s)
- Michele Manfredda
- Elettra-Sincrotrone Trieste SCpA, SS 14 - km 163.5, 34149 Basovizza, Trieste Italy
| | - Lorenzo Raimondi
- Elettra-Sincrotrone Trieste SCpA, SS 14 - km 163.5, 34149 Basovizza, Trieste Italy
| | - Nicola Mahne
- Istituto Officina dei Materiali - CNR, SS 14 - km 163.5, 34149 Basovizza, Trieste Italy
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste SCpA, SS 14 - km 163.5, 34149 Basovizza, Trieste Italy
| |
Collapse
|