1
|
Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids. Nat Commun 2021; 12:1638. [PMID: 33712576 PMCID: PMC7977037 DOI: 10.1038/s41467-021-21756-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
Key insights in materials at extreme temperatures and pressures can be gained by accurate measurements that determine the electrical conductivity. Free-electron laser pulses can ionize and excite matter out of equilibrium on femtosecond time scales, modifying the electronic and ionic structures and enhancing electronic scattering properties. The transient evolution of the conductivity manifests the energy coupling from high temperature electrons to low temperature ions. Here we combine accelerator-based, high-brightness multi-cycle terahertz radiation with a single-shot electro-optic sampling technique to probe the evolution of DC electrical conductivity using terahertz transmission measurements on sub-picosecond time scales with a multi-undulator free electron laser. Our results allow the direct determination of the electron-electron and electron-ion scattering frequencies that are the major contributors of the electrical resistivity. The electrical conductivity is critical to understand warm dense matter, but the accurate measurement is extremely challenging. Here the authors use multi-cycle THz pulses to measure the conductivity of gold foils strongly heated by free-electron laser, determining the individual contributions of electron-electron and electron-ion scattering.
Collapse
|
2
|
Dziarzhytski S, Biednov M, Dicke B, Wang A, Miedema PS, Engel RY, Schunck JO, Redlin H, Weigelt H, Siewert F, Behrens C, Sinha M, Schulte A, Grimm-Lebsanft B, Chiuzbăian SG, Wurth W, Beye M, Rübhausen M, Brenner G. The TRIXS end-station for femtosecond time-resolved resonant inelastic x-ray scattering experiments at the soft x-ray free-electron laser FLASH. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054301. [PMID: 32953941 PMCID: PMC7498279 DOI: 10.1063/4.0000029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We present the experimental end-station TRIXS dedicated to time-resolved soft x-ray resonant inelastic x-ray scattering (RIXS) experiments on solid samples at the free-electron laser FLASH. Using monochromatized ultrashort femtosecond XUV/soft x-ray photon pulses in combination with a synchronized optical laser in a pump-probe scheme, the TRIXS setup allows measuring sub-picosecond time-resolved high-resolution RIXS spectra in the energy range from 35 eV to 210 eV, thus spanning the M-edge (M1 and M2,3) absorption resonances of 3d transition metals and N4,5-edges of rare earth elements. A Kirkpatrick-Baez refocusing mirror system at the first branch of the plane grating monochromator beamline (PG1) provides a focus of (6 × 6) μm2 (FWHM) at the sample. The RIXS spectrometer reaches an energy resolution of 35-160 meV over the entire spectral range. The optical laser system based on a chirped pulse optical parametric amplifier provides approximately 100 fs (FWHM) long photon pulses at the fundamental wavelength of 800 nm and a fluence of 120 mJ/cm2 at a sample for optical pump-XUV probe measurements. Furthermore, optical frequency conversion enables experiments at 400 nm or 267 nm with a fluence of 80 and 30 mJ/cm2, respectively. Some of the first (pump-probe) RIXS spectra measured with this setup are shown. The measured time resolution for time-resolved RIXS measurements has been characterized as 287 fs (FWHM) for the used energy resolution.
Collapse
Affiliation(s)
| | - M. Biednov
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - B. Dicke
- Institute of Nanostructure and Solid State Physics, University of Hamburg and Center for Free-Electron Laser Science (CFEL), Notkestr. 85, Hamburg 22607, Germany
| | - A. Wang
- Sorbonne Université, CNRS (UMR 7614), Laboratoire de Chimie Physique-Matière et Rayonnement, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | - H. Redlin
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - H. Weigelt
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - F. Siewert
- Helmholtz Zentrum Berlin, Department Optics and Beamlines, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - C. Behrens
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - M. Sinha
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - A. Schulte
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - B. Grimm-Lebsanft
- Institute of Nanostructure and Solid State Physics, University of Hamburg and Center for Free-Electron Laser Science (CFEL), Notkestr. 85, Hamburg 22607, Germany
| | - S. G. Chiuzbăian
- Sorbonne Université, CNRS (UMR 7614), Laboratoire de Chimie Physique-Matière et Rayonnement, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - W. Wurth
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - M. Beye
- DESY, Notkestr. 85, Hamburg 22607, Germany
| | - M. Rübhausen
- Institute of Nanostructure and Solid State Physics, University of Hamburg and Center for Free-Electron Laser Science (CFEL), Notkestr. 85, Hamburg 22607, Germany
| | - G. Brenner
- DESY, Notkestr. 85, Hamburg 22607, Germany
| |
Collapse
|