1
|
Halliday JWD, Marocco G, Beyer KA, Heaton C, Nakatsutsumi M, Preston TR, Arrowsmith CD, Baehtz C, Goede S, Humphries O, Garcia AL, Plackett R, Svensson P, Vacalis G, Wark J, Wood D, Zastrau U, Bingham R, Shipsey I, Sarkar S, Gregori G. Bounds on Heavy Axions with an X-Ray Free Electron Laser. PHYSICAL REVIEW LETTERS 2025; 134:055001. [PMID: 39983135 DOI: 10.1103/physrevlett.134.055001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 02/23/2025]
Abstract
We present new exclusion bounds obtained at the European X-Ray Free Electron Laser facility (EuXFEL) on axionlike particles in the mass range 10^{-3} eV≲m_{a}≲10^{4} eV. Our experiment exploits the Primakoff effect via which photons can, in the presence of a strong external electric field, decay into axions, which then convert back into photons after passing through an opaque wall. While similar searches have been performed previously at a third-generation synchrotron [Yamaji et al., Phys. Lett. B 782, 523 (2018)PYLBAJ0370-269310.1016/j.physletb.2018.05.068], our work demonstrates improved sensitivity, exploiting the higher brightness of x-rays at EuXFEL.
Collapse
Affiliation(s)
- Jack W D Halliday
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
- Imperial College London, Blackett Laboratory, London SW7 2AZ, United Kingdom
- Rutherford Appleton Laboratory, STFC, Didcot OX11 0QX, United Kingdom
| | - Giacomo Marocco
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8153, USA
| | - Konstantin A Beyer
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
- Max-Planck-Institut für Kernphysik Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Charles Heaton
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | | | | | - Charles D Arrowsmith
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | | | | | - Alejandro Laso Garcia
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Richard Plackett
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Pontus Svensson
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Georgios Vacalis
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Justin Wark
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Daniel Wood
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Robert Bingham
- Rutherford Appleton Laboratory, STFC, Didcot OX11 0QX, United Kingdom
- University of Strathclyde, John Anderson Building, Glasgow G4 0NG, United Kingdom
| | - Ian Shipsey
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Subir Sarkar
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Gianluca Gregori
- University of Oxford, Department of Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
2
|
Schultze S, Grubmüller H. Bayesian electron density determination from sparse and noisy single-molecule X-ray scattering images. SCIENCE ADVANCES 2024; 10:eadp4425. [PMID: 39454013 PMCID: PMC11506165 DOI: 10.1126/sciadv.adp4425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/27/2024]
Abstract
Single molecule x-ray scattering experiments using free-electron lasers hold the potential to resolve biomolecular structures and structural ensembles. However, molecular electron density determination has so far not been achieved because of low photon counts, high noise levels, and low hit rates. Most approaches therefore focus on large specimen like entire viruses, which scatter sufficiently many photons to allow orientation determination of each image. Small specimens like proteins, however, scatter too few photons for the molecular orientations to be determined. Here, we present a rigorous Bayesian approach to overcome these limitations, additionally taking into account intensity fluctuations, beam polarization, irregular detector shapes, incoherent scattering, and background scattering. We demonstrate using synthetic scattering images that electron density determination of small proteins is possible in this extreme high noise Poisson regime. Tests on published virus data achieved the detector-limited resolution of 9 nm, using only 0.01% of the available photons per image.
Collapse
Affiliation(s)
- Steffen Schultze
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| | - Helmut Grubmüller
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| |
Collapse
|
3
|
Husband RJ, Liermann HP, McHardy JD, McWilliams RS, Goncharov AF, Prakapenka VB, Edmund E, Chariton S, Konôpková Z, Strohm C, Sanchez-Valle C, Frost M, Andriambariarijaona L, Appel K, Baehtz C, Ball OB, Briggs R, Buchen J, Cerantola V, Choi J, Coleman AL, Cynn H, Dwivedi A, Graafsma H, Hwang H, Koemets E, Laurus T, Lee Y, Li X, Marquardt H, Mondal A, Nakatsutsumi M, Ninet S, Pace E, Pepin C, Prescher C, Stern S, Sztuk-Dambietz J, Zastrau U, McMahon MI. Phase transition kinetics of superionic H 2O ice phases revealed by Megahertz X-ray free-electron laser-heating experiments. Nat Commun 2024; 15:8256. [PMID: 39313509 PMCID: PMC11420352 DOI: 10.1038/s41467-024-52505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
H2O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron Laser to create high temperature states of H2O, which were probed using X-ray diffraction during dynamic cooling. We confirm an isostructural transition during heating in the 26-69 GPa range, consistent with the formation of SI-bcc. In contrast to prior work, SI-fcc was observed exclusively above ~50 GPa, despite evidence of melting at lower pressures. The absence of SI-fcc in lower pressure runs is attributed to short heating timescales and the pressure-temperature path induced by the pump-probe heating scheme in which H2O was heated above its melting temperature before the observation of quenched crystalline states, based on the earlier theoretical prediction that SI-bcc nucleates more readily from the fluid than SI-fcc. Our results may have implications for the stability of SI phases in ice-rich planets, for example during dynamic freezing, where the preferential crystallization of SI-bcc may result in distinct physical properties across mantle ice layers.
Collapse
Affiliation(s)
- R J Husband
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - H P Liermann
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J D McHardy
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - R S McWilliams
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - A F Goncharov
- Carnegie Science, Earth and Planets Laboratory, Washington, DC, USA
| | - V B Prakapenka
- The University of Chicago, Center for Advanced Radiation Sources, Chicago, IL, USA
| | - E Edmund
- Carnegie Science, Earth and Planets Laboratory, Washington, DC, USA
| | - S Chariton
- The University of Chicago, Center for Advanced Radiation Sources, Chicago, IL, USA
| | | | - C Strohm
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - C Sanchez-Valle
- Universität Münster, Institut für Mineralogie, Corrensstraße 24, Münster, Germany
| | - M Frost
- SLAC National Accelerator Laboratory, California, USA
| | - L Andriambariarijaona
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - K Appel
- European XFEL, Schenefeld, Germany
| | - C Baehtz
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, Germany
| | - O B Ball
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - R Briggs
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - J Buchen
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Bayerisches Geoinstitut, Universität Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - V Cerantola
- European XFEL, Schenefeld, Germany
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - J Choi
- Department of Earth System Sciences, Yonsei University, Seoul, Korea
| | - A L Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - H Cynn
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - H Graafsma
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - H Hwang
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - E Koemets
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - T Laurus
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Y Lee
- Department of Earth System Sciences, Yonsei University, Seoul, Korea
| | - X Li
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China
| | - H Marquardt
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - A Mondal
- Universität Münster, Institut für Mineralogie, Corrensstraße 24, Münster, Germany
| | | | - S Ninet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - E Pace
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK
| | - C Pepin
- CEA, DAM, DIF, 91297 Arpajon, France; Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, Bruyères-le-Châtel, France
| | - C Prescher
- Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany
| | - S Stern
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- X-Spectrum GmbH, Luruper Hauptstraße 1, Hamburg, Germany
| | | | | | - M I McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Laso Garcia A, Yang L, Bouffetier V, Appel K, Baehtz C, Hagemann J, Höppner H, Humphries O, Kluge T, Mishchenko M, Nakatsutsumi M, Pelka A, Preston TR, Randolph L, Zastrau U, Cowan TE, Huang L, Toncian T. Cylindrical compression of thin wires by irradiation with a Joule-class short-pulse laser. Nat Commun 2024; 15:7896. [PMID: 39266548 PMCID: PMC11392940 DOI: 10.1038/s41467-024-52232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Equation of state measurements at Jovian or stellar conditions are currently conducted by dynamic shock compression driven by multi-kilojoule multi-beam nanosecond-duration lasers. These experiments require precise design of the target and specific tailoring of the spatial and temporal laser profiles to reach the highest pressures. At the same time, the studies are limited by the low repetition rate of the lasers. Here, we show that by the irradiation of a thin wire with single-beam Joule-class short-pulse laser, a converging cylindrical shock is generated compressing the wire material to conditions relevant to the above applications. The shockwave was observed using Phase Contrast Imaging employing a hard X-ray Free Electron Laser with unprecedented temporal and spatial sensitivity. The data collected for Cu wires is in agreement with hydrodynamic simulations of an ablative shock launched by highly impulsive and transient resistive heating of the wire surface. The subsequent cylindrical shockwave travels toward the wire axis and is predicted to reach a compression factor of 9 and pressures above 800 Mbar. Simulations for astrophysical relevant materials underline the potential of this compression technique as a new tool for high energy density studies at high repetition rates.
Collapse
Affiliation(s)
- Alejandro Laso Garcia
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Long Yang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Karen Appel
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Johannes Hagemann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 86, Hamburg, 22607, Germany
| | - Hauke Höppner
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | | | - Alexander Pelka
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Lisa Randolph
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Technische Universität Dresden, Dresden, 01062, Germany
| | - Lingen Huang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
| | - Toma Toncian
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
| |
Collapse
|
5
|
Volpe L, Cebriano Ramírez T, Sánchez CS, Perez A, Curcio A, De Luis D, Gatti G, Kebladj B, Khetari S, Malko S, Perez-Hernandez JA, Frias MDR. A Platform for Ultra-Fast Proton Probing of Matter in Extreme Conditions. SENSORS (BASEL, SWITZERLAND) 2024; 24:5254. [PMID: 39204949 PMCID: PMC11359719 DOI: 10.3390/s24165254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Recent developments in ultrashort and intense laser systems have enabled the generation of short and brilliant proton sources, which are valuable for studying plasmas under extreme conditions in high-energy-density physics. However, developing sensors for the energy selection, focusing, transport, and detection of these sources remains challenging. This work presents a novel and simple design for an isochronous magnetic selector capable of angular and energy selection of proton sources, significantly reducing temporal spread compared to the current state of the art. The isochronous selector separates the beam based on ion energy, making it a potential component in new energy spectrum sensors for ions. Analytical estimations and Monte Carlo simulations validate the proposed configuration. Due to its low temporal spread, this selector is also useful for studying extreme states of matter, such as proton stopping power in warm dense matter, where short plasma stagnation time (<100 ps) is a critical factor. The proposed selector can also be employed at higher proton energies, achieving final time spreads of a few picoseconds. This has important implications for sensing technologies in the study of coherent energy deposition in biology and medical physics.
Collapse
Affiliation(s)
- Luca Volpe
- ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
| | - Teresa Cebriano Ramírez
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
| | - Carlos Sánchez Sánchez
- ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
| | - Alberto Perez
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
| | - Alessandro Curcio
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
- INFN-LNF, Via Enrico Fermi 40, 00044 Frascati, Rome, Italy
| | - Diego De Luis
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
| | - Giancarlo Gatti
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
| | - Berkhahoum Kebladj
- Department of Fundamental Physics, University of Salamanca, 37008 Salamanca, Spain; (B.K.); (S.K.)
| | - Samia Khetari
- Department of Fundamental Physics, University of Salamanca, 37008 Salamanca, Spain; (B.K.); (S.K.)
| | - Sophia Malko
- Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08536, USA;
| | - Jose Antonio Perez-Hernandez
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
| | - Maria Dolores Rodriguez Frias
- Centro de Laseres Pulsados, Building M5, Science Park, Calle Adaja 8, Villamayor, 37185 Salamanca, Spain; (T.C.R.); (A.P.); (A.C.); (D.D.L.); (G.G.); j (J.A.P.-H.); (M.D.R.F.)
- Departamento de Física y Matemáticas, University of Alcalá, Plaza de San Diego s/n, 28801 Madrid, Spain
| |
Collapse
|
6
|
Moldabekov Z, Gawne TD, Schwalbe S, Preston TR, Vorberger J, Dornheim T. Ultrafast Heating-Induced Suppression of d-Band Dominance in the Electronic Excitation Spectrum of Cuprum. ACS OMEGA 2024; 9:25239-25250. [PMID: 38882083 PMCID: PMC11170750 DOI: 10.1021/acsomega.4c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
The combination of isochoric heating of solids by free-electron lasers (FELs) and in situ diagnostics by X-ray Thomson scattering (XRTS) allows for measurements of material properties at warm dense matter (WDM) conditions relevant for astrophysics, inertial confinement fusion, and materials science. In the case of metals, the FEL beam pumps energy directly into electrons with the lattice structure of ions being nearly unaffected. This leads to a unique transient state that gives rise to a set of interesting physical effects, which can serve as a reliable testing platform for WDM theories. In this work, we present extensive linear-response time-dependent density functional theory (TDDFT) results for the electronic dynamic structure factor of isochorically heated copper with a face-centered cubic lattice. At ambient conditions, the plasmon is heavily damped due to the presence of d-band excitations, and its position is independent of the wavenumber. In contrast, the plasmon feature starts to dominate the excitation spectrum and has a Bohm-Gross-type plasmon dispersion for temperatures T ≥ 4 eV, where the quasi-free electrons in the interstitial region are in the WDM regime. In addition, we analyze the thermal changes in the d-band excitations and outline the possibility to use future XRTS measurements of isochorically heated copper as a controlled testbed for WDM theories.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Thomas D Gawne
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Sebastian Schwalbe
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | | | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
7
|
Paulson L, Narayanasamy SR, Shelby ML, Frank M, Trebbin M. Advanced manufacturing provides tailor-made solutions for crystallography with x-ray free-electron lasers. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:011101. [PMID: 38389979 PMCID: PMC10883715 DOI: 10.1063/4.0000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Serial crystallography at large facilities, such as x-ray free-electron lasers and synchrotrons, evolved as a powerful method for the high-resolution structural investigation of proteins that are critical for human health, thus advancing drug discovery and novel therapies. However, a critical barrier to successful serial crystallography experiments lies in the efficient handling of the protein microcrystals and solutions at microscales. Microfluidics are the obvious approach for any high-throughput, nano-to-microliter sample handling, that also requires design flexibility and rapid prototyping to deal with the variable shapes, sizes, and density of crystals. Here, we discuss recent advances in polymer 3D printing for microfluidics-based serial crystallography research and present a demonstration of emerging, large-scale, nano-3D printing approaches leading into the future of 3D sample environment and delivery device fabrication from liquid jet gas-dynamic virtual nozzles devices to fixed-target sample environment technology.
Collapse
Affiliation(s)
- Lars Paulson
- Department of Chemistry & Research and Education in Energy, Environment and Water (RENEW), The State University of New York at Buffalo, Buffalo, New York 14260, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | | |
Collapse
|
8
|
Lima FA, Otte F, Vakili M, Ardana-Lamas F, Biednov M, Dall’Antonia F, Frankenberger P, Gawelda W, Gelisio L, Han H, Huang X, Jiang Y, Kloos M, Kluyver T, Knoll M, Kubicek K, Bermudez Macias IJ, Schulz J, Turkot O, Uemura Y, Valerio J, Wang H, Yousef H, Zalden P, Khakhulin D, Bressler C, Milne C. Experimental capabilities for liquid jet samples at sub-MHz rates at the FXE Instrument at European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1168-1182. [PMID: 37860937 PMCID: PMC10624029 DOI: 10.1107/s1600577523008159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
The Femtosecond X-ray Experiments (FXE) instrument at the European X-ray Free-Electron Laser (EuXFEL) provides an optimized platform for investigations of ultrafast physical, chemical and biological processes. It operates in the energy range 4.7-20 keV accommodating flexible and versatile environments for a wide range of samples using diverse ultrafast X-ray spectroscopic, scattering and diffraction techniques. FXE is particularly suitable for experiments taking advantage of the sub-MHz repetition rates provided by the EuXFEL. In this paper a dedicated setup for studies on ultrafast biological and chemical dynamics in solution phase at sub-MHz rates at FXE is presented. Particular emphasis on the different liquid jet sample delivery options and their performance is given. Our portfolio of high-speed jets compatible with sub-MHz experiments includes cylindrical jets, gas dynamic virtual nozzles and flat jets. The capability to perform multi-color X-ray emission spectroscopy (XES) experiments is illustrated by a set of measurements using the dispersive X-ray spectrometer in von Hamos geometry. Static XES data collected using a multi-crystal scanning Johann-type spectrometer are also presented. A few examples of experimental results on ultrafast time-resolved X-ray emission spectroscopy and wide-angle X-ray scattering at sub-MHz pulse repetition rates are given.
Collapse
Affiliation(s)
- F. A. Lima
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - F. Otte
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Fakultät für Physik, Technical University Dortmund, Dortmund, Germany
| | - M. Vakili
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - M. Biednov
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - W. Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - L. Gelisio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - X. Huang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Jiang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T. Kluyver
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Knoll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Kubicek
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22607 Hamburg, Germany
| | | | - J. Schulz
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - O. Turkot
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Uemura
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Wang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - P. Zalden
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D. Khakhulin
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22607 Hamburg, Germany
| | - C. Milne
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
9
|
Kim M, Kim YJ, Cho YC, Lee S, Kim S, Liermann HP, Lee YH, Lee GW. Simultaneous measurements of volume, pressure, optical images, and crystal structure with a dynamic diamond anvil cell: A real-time event monitoring system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:113904. [PMID: 38015123 DOI: 10.1063/5.0166090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
The dynamic diamond anvil cell (dDAC) technique has attracted great interest because it possibly provides a bridge between static and dynamic compression studies with fast, repeatable, and controllable compression rates. The dDAC can be a particularly useful tool to study the pathways and kinetics of phase transitions under dynamic pressurization if simultaneous measurements of physical quantities are possible as a function of time. We here report the development of a real-time event monitoring (RTEM) system with dDAC, which can simultaneously record the volume, pressure, optical image, and structure of materials during dynamic compression runs. In particular, the volume measurement using both Fabry-Pérot interferogram and optical images facilitates the construction of an equation of state (EoS) using the dDAC in a home-laboratory. We also developed an in-line ruby pressure measurement (IRPM) system to be deployed at a synchrotron x-ray facility. This system provides simultaneous measurements of pressure and x-ray diffraction in low and narrow pressure ranges. The EoSs of ice VI obtained from the RTEM and the x-ray diffraction data with the IRPM are consistent with each other. The complementarity of both RTEM and IRPM systems will provide a great opportunity to scrutinize the detailed kinetic pathways of phase transitions using dDAC.
Collapse
Affiliation(s)
- Minju Kim
- Frontier of Extreme Physics, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Yong-Jae Kim
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Yong Chan Cho
- Frontier of Extreme Physics, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sooheyong Lee
- Frontier of Extreme Physics, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Applied Measurement Science, University of Science and Technology, Daejeon, Daejeon 34113, Republic of Korea
| | - Seongheun Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea
| | | | - Yun-Hee Lee
- Frontier of Extreme Physics, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Geun Woo Lee
- Frontier of Extreme Physics, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Applied Measurement Science, University of Science and Technology, Daejeon, Daejeon 34113, Republic of Korea
| |
Collapse
|
10
|
Kaa JM, Konôpková Z, Preston TR, Cerantola V, Sahle CJ, Förster M, Albers C, Libon L, Sakrowski R, Wollenweber L, Buakor K, Dwivedi A, Mishchenko M, Nakatsutsumi M, Plückthun C, Schwinkendorf JP, Spiekermann G, Thiering N, Petitgirard S, Tolan M, Wilke M, Zastrau U, Appel K, Sternemann C. A von Hámos spectrometer for diamond anvil cell experiments at the High Energy Density Instrument of the European X-ray Free-Electron Laser. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:822-830. [PMID: 37159289 PMCID: PMC10325027 DOI: 10.1107/s1600577523003041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
A von Hámos spectrometer has been implemented in the vacuum interaction chamber 1 of the High Energy Density instrument at the European X-ray Free-Electron Laser facility. This setup is dedicated, but not necessarily limited, to X-ray spectroscopy measurements of samples exposed to static compression using a diamond anvil cell. Si and Ge analyser crystals with different orientations are available for this setup, covering the hard X-ray energy regime with a sub-eV energy resolution. The setup was commissioned by measuring various emission spectra of free-standing metal foils and oxide samples in the energy range between 6 and 11 keV as well as low momentum-transfer inelastic X-ray scattering from a diamond sample. Its capabilities to study samples at extreme pressures and temperatures have been demonstrated by measuring the electronic spin-state changes of (Fe0.5Mg0.5)O, contained in a diamond anvil cell and pressurized to 100 GPa, via monitoring the Fe Kβ fluorescence with a set of four Si(531) analyser crystals at close to melting temperatures. The efficiency and signal-to-noise ratio of the spectrometer enables valence-to-core emission signals to be studied and single pulse X-ray emission from samples in a diamond anvil cell to be measured, opening new perspectives for spectroscopy in extreme conditions research.
Collapse
Affiliation(s)
- Johannes M. Kaa
- Technische Universität Dortmund, Fakultät Physik/DELTA, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Valerio Cerantola
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy
| | - Christoph J. Sahle
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mirko Förster
- Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Christian Albers
- Technische Universität Dortmund, Fakultät Physik/DELTA, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
| | - Lélia Libon
- Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Robin Sakrowski
- Technische Universität Dortmund, Fakultät Physik/DELTA, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
| | | | | | - Anand Dwivedi
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Christian Plückthun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Universität Rostock, Institut für Physik, Albert-Einstein-Straße 23–24, 18059 Rostock, Germany
| | | | | | - Nicola Thiering
- Technische Universität Dortmund, Fakultät Physik/DELTA, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
| | | | - Metin Tolan
- Technische Universität Dortmund, Fakultät Physik/DELTA, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
- Universität Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Max Wilke
- Universität Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Karen Appel
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Christian Sternemann
- Technische Universität Dortmund, Fakultät Physik/DELTA, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Husband RJ, Strohm C, Appel K, Ball OB, Briggs R, Buchen J, Cerantola V, Chariton S, Coleman AL, Cynn H, Dattelbaum D, Dwivedi A, Eggert JH, Ehm L, Evans WJ, Glazyrin K, Goncharov AF, Graafsma H, Howard A, Huston L, Hutchinson TM, Hwang H, Jacob S, Kaa J, Kim J, Kim M, Koemets E, Konôpková Z, Langenhorst F, Laurus T, Li X, Mainberger J, Marquardt H, McBride EE, McGuire C, McHardy JD, McMahon MI, McWilliams RS, Méndez ASJ, Mondal A, Morard G, O’Bannon EF, Otzen C, Pépin CM, Prakapenka VB, Prescher C, Preston TR, Redmer R, Roeper M, Sanchez-Valle C, Smith D, Smith RF, Sneed D, Speziale S, Spitzbart T, Stern S, Sturtevant BT, Sztuk-Dambietz J, Talkovski P, Velisavljevic N, Vennari C, Wu Z, Yoo CS, Zastrau U, Jenei Z, Liermann HP. A MHz X-ray diffraction set-up for dynamic compression experiments in the diamond anvil cell. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:671-685. [PMID: 37318367 PMCID: PMC10325015 DOI: 10.1107/s1600577523003910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.
Collapse
Affiliation(s)
- Rachel J. Husband
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Cornelius Strohm
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Karen Appel
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Orianna B. Ball
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Richard Briggs
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Johannes Buchen
- University of Oxford, Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
| | | | - Stella Chariton
- The University of Chicago, Consortium for Advanced Radiation Sources, 5640 South Ellis Avenue Chicago, IL 60637, USA
| | - Amy L. Coleman
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Hyunchae Cynn
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Dana Dattelbaum
- Los Alamos National Laboratory, Shock and Detonation Physics (M-9), PO 1663, Los Alamos, NM 87545, USA
| | - Anand Dwivedi
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jon H. Eggert
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Lars Ehm
- Department of Geosciences, 255 Earth and Space Sciences Building (ESS), Stony Brook, NY 11794-2100, USA
| | - William J. Evans
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | | | - Alexander F. Goncharov
- Carnegie Science, Earth and Planets Laboratory, 5241 Broad Branch Road, NW, Washington, DC 20015, USA
| | - Heinz Graafsma
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Alex Howard
- Washington State University, Department of Chemistry and Institute for Shock Physics, Pullman, WA 99164, USA
| | - Larissa Huston
- Los Alamos National Laboratory, Shock and Detonation Physics (M-9), PO 1663, Los Alamos, NM 87545, USA
| | - Trevor M. Hutchinson
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Huijeong Hwang
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sony Jacob
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Johannes Kaa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Technische Universität Dortmund, Fakultät Physik/DELTA, Maria-Goeppert-Mayer-Straße 2, 44227 Dortmund, Germany
| | - Jaeyong Kim
- Hanyang University, Department of Physics, 17 Haengdang Dong, Seongdong gu Seoul 133-791, Republic of Korea
| | - Minseob Kim
- Washington State University, Department of Chemistry and Institute for Shock Physics, Pullman, WA 99164, USA
| | - Egor Koemets
- University of Oxford, Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
| | | | - Falko Langenhorst
- Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, 07745 Jena, Germany
| | - Torsten Laurus
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Xinyang Li
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Jona Mainberger
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Hauke Marquardt
- University of Oxford, Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
| | - Emma E. McBride
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Christopher McGuire
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - James D. McHardy
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Malcolm I. McMahon
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - R. Stewart McWilliams
- SUPA, School of Physics and Astronomy, and Centre for Science at Extreme Conditions, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Alba S. J. Méndez
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anshuman Mondal
- Universität Münster, Institut für Mineralogie, Corrensstraße 24, 48149 Münster, Germany
| | - Guillaume Morard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
| | - Earl F. O’Bannon
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Christoph Otzen
- Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, 07745 Jena, Germany
| | - Charles M. Pépin
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| | - Vitali B. Prakapenka
- The University of Chicago, Consortium for Advanced Radiation Sources, 5640 South Ellis Avenue Chicago, IL 60637, USA
| | - Clemens Prescher
- Albert-Ludwigs University of Freiburg, Institute of Earth and Environmental Sciences, Hermann-Herder-Str. 5, D-79104 Freiburg, Germany
| | | | - Ronald Redmer
- Universität Rostock, Institut für Physik, Albert-Einstein-Straße 23–24, 18059 Rostock, Germany
| | - Michael Roeper
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Carmen Sanchez-Valle
- Universität Münster, Institut für Mineralogie, Corrensstraße 24, 48149 Münster, Germany
| | - Dean Smith
- Argonne National Laboratory, High Pressure Collaborative Access Team (HPCAT), X-ray Science Division (XSD), 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Raymond F. Smith
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Daniel Sneed
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Sergio Speziale
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - Tobias Spitzbart
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Stephan Stern
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Blake T. Sturtevant
- Los Alamos National Laboratory, Shock and Detonation Physics (M-9), PO 1663, Los Alamos, NM 87545, USA
| | | | - Peter Talkovski
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nenad Velisavljevic
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Cara Vennari
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | - Zhongyan Wu
- Hanyang University, Department of Physics, 17 Haengdang Dong, Seongdong gu Seoul 133-791, Republic of Korea
| | - Choong-Shik Yoo
- Washington State University, Department of Chemistry and Institute for Shock Physics, Pullman, WA 99164, USA
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Zsolt Jenei
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA 94550, USA
| | | |
Collapse
|
12
|
Pan X, Šmíd M, Štefaníková R, Donat F, Baehtz C, Burian T, Cerantola V, Gaus L, Humphries OS, Hajkova V, Juha L, Krupka M, Kozlová M, Konopkova Z, Preston TR, Wollenweber L, Zastrau U, Falk K. Imaging x-ray spectrometer at the high energy density instrument of the European x-ray free electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:033501. [PMID: 37012789 DOI: 10.1063/5.0133639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/03/2023] [Indexed: 06/19/2023]
Abstract
A multipurpose imaging x-ray crystal spectrometer is developed for the high energy density instrument of the European X-ray Free Electron Laser. The spectrometer is designed to measure x rays in the energy range of 4-10 keV, providing high-resolution, spatially resolved spectral measurements. A toroidally bent germanium (Ge) crystal is used, allowing x-ray diffraction from the crystal to image along a one-dimensional spatial profile while spectrally resolving along the other. A detailed geometrical analysis is performed to determine the curvature of the crystal. The theoretical performance of the spectrometer in various configurations is calculated by ray-tracing simulations. The key properties of the spectrometer, including the spectral and spatial resolution, are demonstrated experimentally on different platforms. Experimental results prove that this Ge spectrometer is a powerful tool for spatially resolved measurements of x-ray emission, scattering, or absorption spectra in high energy density physics.
Collapse
Affiliation(s)
- X Pan
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - M Šmíd
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - R Štefaníková
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - F Donat
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - C Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - T Burian
- Institute of Physics of the ASCR, 18221 Prague, Czech Republic
| | - V Cerantola
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - L Gaus
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - O S Humphries
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - V Hajkova
- Institute of Physics of the ASCR, 18221 Prague, Czech Republic
| | - L Juha
- Institute of Physics of the ASCR, 18221 Prague, Czech Republic
| | - M Krupka
- Institute of Physics of the ASCR, 18221 Prague, Czech Republic
| | - M Kozlová
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Z Konopkova
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T R Preston
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - L Wollenweber
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - U Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K Falk
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| |
Collapse
|
13
|
Makarov S, Makita M, Nakatsutsumi M, Pikuz T, Ozaki N, Preston TR, Appel K, Konopkova Z, Cerantola V, Brambrink E, Schwinkendorf JP, Mohacsi I, Burian T, Chalupsky J, Hajkova V, Juha L, Vozda V, Nagler B, Zastrau U, Pikuz S. Direct LiF imaging diagnostics on refractive X-ray focusing at the EuXFEL High Energy Density instrument. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:208-216. [PMID: 36601939 PMCID: PMC9814068 DOI: 10.1107/s1600577522006245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 06/17/2023]
Abstract
The application of fluorescent crystal media in wide-range X-ray detectors provides an opportunity to directly image the spatial distribution of ultra-intense X-ray beams including investigation of the focal spot of free-electron lasers. Here the capabilities of the micro- and nano-focusing X-ray refractive optics available at the High Energy Density instrument of the European XFEL are reported, as measured in situ by means of a LiF fluorescent detector placed into and around the beam caustic. The intensity distribution of the beam focused down to several hundred nanometers was imaged at 9 keV photon energy. A deviation from the parabolic surface in a stack of nanofocusing Be compound refractive lenses (CRLs) was found to affect the resulting intensity distribution within the beam. Comparison of experimental patterns in the far field with patterns calculated for different CRL lens imperfections allowed the overall inhomogeneity in the CRL stack to be estimated. The precise determination of the focal spot size and shape on a sub-micrometer level is essential for a number of high energy density studies requiring either a pin-size backlighting spot or extreme intensities for X-ray heating.
Collapse
Affiliation(s)
- Sergey Makarov
- Joint Institute for High Temperatures Russian Academy of Sciences, Izhorskaya St 13, Bd 2, Moscow 125412, Russian Federation
| | | | | | - Tatiana Pikuz
- Joint Institute for High Temperatures Russian Academy of Sciences, Izhorskaya St 13, Bd 2, Moscow 125412, Russian Federation
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-6 Yamadaoka, Osaka 565-0871, Japan
| | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Karen Appel
- European XFEL, Holzkoppel 4, 22869 Hamburg, Germany
| | | | - Valerio Cerantola
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
| | | | | | | | - Tomas Burian
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
- Plasma Physics Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague 8, Czech Republic
| | - Jaromir Chalupsky
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Vera Hajkova
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Libor Juha
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Vojtech Vozda
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Hamburg, Germany
| | - Sergey Pikuz
- Joint Institute for High Temperatures Russian Academy of Sciences, Izhorskaya St 13, Bd 2, Moscow 125412, Russian Federation
| |
Collapse
|
14
|
|
15
|
Hirao N, Ohishi Y. X-ray focusing to 62 keV by compound refractive lenses for high-pressure x-ray diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:083908. [PMID: 36050080 DOI: 10.1063/5.0099652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
This study describes high-energy x-ray focusing optics using compound refractive lenses (CRLs) for high-pressure x-ray diffraction (XRD) with a monochromatic x-ray beam. A CRL-based x-ray transfocator was upgraded and installed in the optics hutch at the BL10XU beamline of SPring-8. The instrument can be equipped with two types of CRLs in parallel: a newly designed aluminum (Al) CRL for x-ray energies of 40-62 keV and an existing glassy carbon CRL for those up to 40 keV. In only the Al-CRL-based x-ray transfocator, a 62 keV monochromatic x-ray beam with horizontal (H) and vertical (V) focused spots, whose sizes were 189 and 10.5 µm, respectively, and a flux of 1.32 × 1011 phs/s were generated. A polymer SU-8 CRL fabricated via deep x-ray lithography was installed to further reduce the x-ray beam size. The Al-CRL and the SU-8 CRL were combined to generate a smaller spot size of 12.5 (H) × 11.0 (V) μm2 with a flux of 3 × 1010 phs/s at 62 keV. A two-step optical configuration combining an x-ray transfocator and SU-8 CRL provides a valuable method for high-pressure XRD using a high-energy x-ray focused beam. The optical design and performance of the Al-CRL-based x-ray transfocator, its combination with the SU-8 CRL, and the first results of the focusing optics commissioning are presented here.
Collapse
Affiliation(s)
- Naohisa Hirao
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasuo Ohishi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|