1
|
Kuppili VSC, Ball M, Batey D, Dodds K, Cipiccia S, Wanelik K, Fu R, Rau C, Harrison RJ. Nanoscale imaging of Fe-rich inclusions in single-crystal zircon using X-ray ptycho-tomography. Sci Rep 2024; 14:5139. [PMID: 38429500 PMCID: PMC10907758 DOI: 10.1038/s41598-024-55846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024] Open
Abstract
We apply X-ray ptycho-tomography to perform high-resolution, non-destructive, three-dimensional (3D) imaging of Fe-rich inclusions in paleomagnetically relevant materials (zircon single crystals from the Bishop Tuff ignimbrite). Correlative imaging using quantum diamond magnetic microscopy combined with X-ray fluorescence mapping was used to locate regions containing potential ferromagnetic remanence carriers. Ptycho-tomographic reconstructions with voxel sizes 85 nm and 21 nm were achievable across a field-of-view > 80 µm; voxel sizes as small as 5 nm were achievable over a limited field-of-view using local ptycho-tomography. Fe-rich inclusions 300 nm in size were clearly resolved. We estimate that particles as small as 100 nm-approaching single-domain threshold for magnetite-could be resolvable using this "dual-mode" methodology. Fe-rich inclusions (likely magnetite) are closely associated with apatite inclusions that have no visible connection to the exterior surface of the zircon (e.g., via intersecting cracks). There is no evidence of radiation damage, alteration, recrystallisation or deformation in the host zircon or apatite that could provide alternative pathways for Fe infiltration, indicating that magnetite and apatite grew separately as primary phases in the magma, that magnetite adhered to the surfaces of the apatite, and that the magnetite-coated apatite was then encapsulated as primary inclusions within the growing zircon. Rarer examples of Fe-rich inclusions entirely encapsulated by zircon are also observed. These observations support the presence of primary inclusions in relatively young and pristine zircon crystals. Combining magnetic and tomography results we deduce the presence of magnetic carriers that are in the optimal size range for carrying strong and stable paleomagnetic signals but that remain below the detection limits of even the highest-resolution X-ray tomography reconstructions. We recommend the use of focused ion beam nanotomography and/or correlative transmission electron microscopy to directly confirm the presence of primary magnetite in the sub 300 nm range as a necessary step in targeted paleomagnetic workflows.
Collapse
Affiliation(s)
- Venkata S C Kuppili
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
- Canadian Light Source, University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada.
| | - Matthew Ball
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Darren Batey
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Kathryn Dodds
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Silvia Cipiccia
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower St, London, WC1E 6BT, UK
| | - Kaz Wanelik
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Roger Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Christoph Rau
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Richard J Harrison
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|
2
|
Strotton M, Hosogane T, di Michiel M, Moch H, Varga Z, Bodenmiller B. Multielement Z-tag imaging by X-ray fluorescence microscopy for next-generation multiplex imaging. Nat Methods 2023; 20:1310-1322. [PMID: 37653120 PMCID: PMC10482696 DOI: 10.1038/s41592-023-01977-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
Rapid, highly multiplexed, nondestructive imaging that spans the molecular to the supra-cellular scale would be a powerful tool for tissue analysis. However, the physical constraints of established imaging methods limit the simultaneous improvement of these parameters. Whole-organism to atomic-level imaging is possible with tissue-penetrant, picometer-wavelength X-rays. To enable highly multiplexed X-ray imaging, we developed multielement Z-tag X-ray fluorescence (MEZ-XRF) that can operate at kHz speeds when combined with signal amplification by exchange reaction (SABER)-amplified Z-tag reagents. We demonstrated parallel imaging of 20 Z-tag or SABER Z-tag reagents at subcellular resolution in cell lines and multiple human tissues. We benchmarked MEZ-XRF against imaging mass cytometry and demonstrated the nondestructive multiscale repeat imaging capabilities of MEZ-XRF with rapid tissue overview scans, followed by slower, more sensitive imaging of low-abundance markers such as immune checkpoint proteins. The unique multiscale, nondestructive nature of MEZ-XRF, combined with SABER Z-tags for high sensitivity or enhanced speed, enables highly multiplexed bioimaging across biological scales.
Collapse
Affiliation(s)
- Merrick Strotton
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| | - Tsuyoshi Hosogane
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Abe M, Ishiguro N, Uematsu H, Takazawa S, Kaneko F, Takahashi Y. X-ray ptychographic and fluorescence microscopy using virtual single-pixel imaging based deconvolution with accurate probe images. OPTICS EXPRESS 2023; 31:26027-26039. [PMID: 37710473 DOI: 10.1364/oe.495733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/15/2023] [Indexed: 09/16/2023]
Abstract
Simultaneous measurement of X-ray ptychography and fluorescence microscopy allows high-resolution and high-sensitivity observations of the microstructure and trace-element distribution of a sample. In this paper, we propose a method for improving scanning fluorescence X-ray microscopy (SFXM) images, in which the SFXM image is deconvolved via virtual single-pixel imaging using different probe images for each scanning point obtained by X-ray ptychographic reconstruction. Numerical simulations confirmed that this method can increase the spatial resolution while suppressing artifacts caused by probe imprecision, e.g., probe position errors and wavefront changes. The method also worked well in synchrotron radiation experiments to increase the spatial resolution and was applied to the observation of S element maps of ZnS particles.
Collapse
|
4
|
Di Trapani V, Brombal L, Brun F. Multi-material spectral photon-counting micro-CT with minimum residual decomposition and self-supervised deep denoising. OPTICS EXPRESS 2022; 30:42995-43011. [PMID: 36523008 DOI: 10.1364/oe.471439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
Spectral micro-CT imaging with direct-detection energy discriminating photon counting detectors having small pixel size (< 100×100 µm2) is mainly hampered by: i) the limited energy resolution of the imaging device due to charge sharing effects and ii) the unavoidable noise amplification in the images resulting from basis material decomposition. In this work, we present a cone-beam micro-CT setup that includes a CdTe photon counting detector implementing a charge summing hardware solution to correct for the charge-sharing issue and an innovative image processing pipeline based on accurate modeling of the spectral response of the imaging system, an improved basis material decomposition (BMD) algorithm named minimum-residual BMD (MR-BMD), and self-supervised deep convolutional denoising. Experimental tomographic projections having a pixel size of 45×45 µm2 of a plastinated mouse sample including I, Ba, and Gd small cuvettes were acquired. Results demonstrate the capability of the combined hardware and software tools to sharply discriminate even between materials having their K-Edge separated by a few keV, such as e.g., I and Ba. By evaluating the quality of the reconstructed decomposed images (water, bone, I, Ba, and Gd), the quantitative performances of the spectral system are here assessed and discussed.
Collapse
|