1
|
Martin OA, Sykes PJ, Lavin M, Engels E, Martin RF. What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics. Radiat Res 2024; 202:309-327. [PMID: 38966925 DOI: 10.1667/rade-24-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.
Collapse
Affiliation(s)
- Olga A Martin
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Pamela J Sykes
- College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, SA, Australia
| | - Martin Lavin
- Centre for Clinical Research, University of Queensland, QSL, Brisbane, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, VIC, Australia
| | - Roger F Martin
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Leivaditis V, Mulita F, Dahm M, Grapatsas K, Papatriantafyllou A, Bekou E, Verras GI, Tasios K, Tchabashvili L, Markakis K, Lozos V, Koletsis E. History of the development of isolated heart perfusion experimental model and its pioneering role in understanding heart physiology. Arch Med Sci Atheroscler Dis 2024; 9:e109-e121. [PMID: 39086622 PMCID: PMC11289247 DOI: 10.5114/amsad/188270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 08/02/2024] Open
Abstract
The isolated heart perfusion model, a fundamental tool in cardiovascular research, has evolved significantly since its inception in the late 19th century. This review traces the development of the isolated heart model, from its early adaptations by pioneers such as Langendorff and Starling to modern advancements by researchers like Morgan and Neely. We discuss the various applications of the model in pharmacological testing, disease modeling, and educational settings, emphasizing its crucial role in understanding cardiac function and disease mechanisms. Recent technological enhancements, including high-resolution imaging, integration with bioengineering, and advanced genomic and proteomic analyses, have significantly broadened the capabilities of these models. Looking forward, we explore potential future developments such as the integration of precision medicine, stem cell research, and artificial intelligence, which promise to revolutionize the use of isolated heart perfusion models. This review highlights the model's crucial role in bridging experimental research and clinical applications.
Collapse
Affiliation(s)
- Vasileios Leivaditis
- Department of Cardiothoracic and Vascular Surgery, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Francesk Mulita
- Department of General Surgery, Patras University Hospital, Patras, Greece
| | - Manfred Dahm
- Department of Cardiothoracic and Vascular Surgery, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Konstantinos Grapatsas
- Department of Thoracic Surgery and Thoracic Endoscopy, Ruhrlandklinik, West German Lung Center, University Hospital Essen, University Duisburg-Essen Essen, Germany
| | | | - Eleni Bekou
- Medical Physics Department, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | | | | - Levan Tchabashvili
- Department of General Surgery, Patras University Hospital, Patras, Greece
| | | | - Vasileios Lozos
- Department of Cardiac Surgery, Ippokrateion Hospital, Athens, Greece
| | - Efstratios Koletsis
- Department of Cardiothoracic Surgery, Patras University Hospital, Patras, Greece
| |
Collapse
|
3
|
Jaekel F, Paino J, Engels E, Klein M, Barnes M, Häusermann D, Hall C, Zheng G, Wang H, Hildebrandt G, Lerch M, Schültke E. The Spinal Cord as Organ of Risk: Assessment for Acute and Subacute Neurological Adverse Effects after Microbeam Radiotherapy in a Rodent Model. Cancers (Basel) 2023; 15:cancers15092470. [PMID: 37173938 PMCID: PMC10177263 DOI: 10.3390/cancers15092470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Microbeam radiotherapy (MRT), a high dose rate radiotherapy technique using spatial dose fractionation at the micrometre range, has shown a high therapeutic efficacy in vivo in different tumour entities, including lung cancer. We have conducted a toxicity study for the spinal cord as organ of risk during irradiation of a target in the thoracic cavity. In young adult rats, the lower thoracic spinal cord was irradiated over a length of 2 cm with an array of quasi-parallel microbeams of 50 µm width, spaced at a centre-to-centre distance of 400 µm, with MRT peak doses up to 800 Gy. No acute or subacute adverse effects were observed within the first week after irradiation up to MRT peak doses of 400 Gy. No significant differences were seen between irradiated animals and non-irradiated controls in motor function and sensitivity, open field test and somatosensory evoked potentials (SSEP). After irradiation with MRT peak doses of 450-800 Gy, dose-dependent neurologic signs occurred. Provided that long-term studies do not reveal significant morbidity due to late toxicity, an MRT dose of 400 Gy can be considered safe for the spinal cord in the tested beam geometry and field size.
Collapse
Affiliation(s)
- Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Jason Paino
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | - Mitzi Klein
- Australian Synchrotron, ANSTO, Clayton 3168, Australia
| | - Micah Barnes
- Australian Synchrotron, ANSTO, Clayton 3168, Australia
| | | | | | - Gang Zheng
- Monash Biomedical Imaging, Clayton 3168, Australia
| | - Hongxin Wang
- Monash Biomedical Imaging, Clayton 3168, Australia
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Michael Lerch
- Centre of Medical Radiation Physics, University of Wollongong, Wollongong 2522, Australia
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| |
Collapse
|
4
|
Effects of Microbeam Irradiation on Rodent Esophageal Smooth Muscle Contraction. Cells 2022; 12:cells12010176. [PMID: 36611969 PMCID: PMC9818134 DOI: 10.3390/cells12010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND High-dose-rate radiotherapy has shown promising results with respect to normal tissue preservation. We developed an ex vivo model to study the physiological effects of experimental radiotherapy in the rodent esophageal smooth muscle. METHODS We assessed the physiological parameters of the esophageal function in ex vivo preparations of the proximal, middle, and distal segments in the organ bath. High-dose-rate synchrotron irradiation was conducted using both the microbeam irradiation (MBI) technique with peak doses greater than 200 Gy and broadbeam irradiation (BBI) with doses ranging between 3.5-4 Gy. RESULTS Neither MBI nor BBI affected the function of the contractile apparatus. While peak latency and maximal force change were not affected in the BBI group, and no changes were seen in the proximal esophagus segments after MBI, a significant increase in peak latency and a decrease in maximal force change was observed in the middle and distal esophageal segments. CONCLUSION No severe changes in physiological parameters of esophageal contraction were determined after high-dose-rate radiotherapy in our model, but our results indicate a delayed esophageal function. From the clinical perspective, the observed increase in peak latency and decreased maximal force change may indicate delayed esophageal transit.
Collapse
|