1
|
Oberthür D, Hakanpää J, Chatziefthymiou S, Pompidor G, Bean R, Chapman HN, Weckert E. Present and future structural biology activities at DESY and the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:474-485. [PMID: 39964790 PMCID: PMC11892905 DOI: 10.1107/s1600577525000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Structural biology investigations using synchrotron radiation have a long history at the photon science facilities at DESY. Presently, EMBL and DESY operate state-of-the-art macromolecular crystallography and biological SAXS stations at the synchrotron radiation source PETRA III for the international user community. New experimental opportunities for experiments with femtosecond temporal resolution and for extremely small macromolecular crystals have become available with the advent of X-ray free-electron lasers (XFELs) such as the European XFEL. Within large international collaborations, groups at DESY and the European XFEL have contributed significantly to the development of experimental and data analysis methods to enable serial crystallography experiments at both XFELs and high-brilliance synchrotron radiation sources. The available portfolio of analytical infrastructure in photon science at DESY has attracted several campus partners to contribute to the development of instruments and methods and provide their own complementary experimental techniques, thereby establishing a fruitful scientific environment to make significant contributions to present and future societal challenges in the field of life sciences.
Collapse
Affiliation(s)
- Dominik Oberthür
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Johanna Hakanpää
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | | | | | | | - Henry N. Chapman
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
- Centre for Ultrafast Imaging, Luruper Chausee 149, 22761Hamburg, Germany
- Department of PhysicsUniversity of HamburgLuruper Chausee 14922761HamburgGermany
| | - Edgar Weckert
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| |
Collapse
|
2
|
Ashe P, Tu K, Stobbs JA, Dynes JJ, Vu M, Shaterian H, Kagale S, Tanino KK, Wanasundara JPD, Vail S, Karunakaran C, Quilichini TD. Applications of synchrotron light in seed research: an array of x-ray and infrared imaging methodologies. FRONTIERS IN PLANT SCIENCE 2025; 15:1395952. [PMID: 40034948 PMCID: PMC11873090 DOI: 10.3389/fpls.2024.1395952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Synchrotron radiation (SR) provides a wide spectrum of bright light that can be tailored to test myriad research questions. SR provides avenues to illuminate structure and composition across scales, making it ideally suited to the study of plants and seeds. Here, we present an array of methodologies and the data outputs available at a light source facility. Datasets feature seed and grain from a range of crop species including Citrullus sp. (watermelon), Brassica sp. (canola), Pisum sativum (pea), and Triticum durum (wheat), to demonstrate the power of SR for advancing plant science. The application of SR micro-computed tomography (SR-µCT) imaging revealed internal seed microstructures and their three-dimensional morphologies in exquisite detail, without the need for destructive sectioning. Spectroscopy in the infrared spectrum probed sample biochemistry, detailing the spatial distribution of seed macronutrients such as lipid, protein and carbohydrate in the embryo, endosperm and seed coat. Methods using synchrotron X-rays, including X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) imaging revealed elemental distributions, to spatially map micronutrients in seed subcompartments and to determine their speciation. Synchrotron spectromicroscopy (SM) allowed chemical composition to be resolved at the nano-scale level. Diverse crop seed datasets showcase the range of structural and chemical insights provided by five beamlines at the Canadian Light Source, and the potential for synchrotron imaging for informing plant and agricultural research.
Collapse
Affiliation(s)
- Paula Ashe
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | | | | | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | - Hamid Shaterian
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Karen K. Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Sally Vail
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | | | - Teagen D. Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Albers J, Svetlove A, Duke E. Synchrotron X-ray imaging of soft biological tissues - principles, applications and future prospects. J Cell Sci 2024; 137:jcs261953. [PMID: 39440473 PMCID: PMC11529875 DOI: 10.1242/jcs.261953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Synchrotron-based tomographic phase-contrast X-ray imaging (SRµCT or SRnCT) is a versatile isotropic three-dimensional imaging technique that can be used to study biological samples spanning from single cells to human-sized specimens. SRµCT and SRnCT take advantage of the highly brilliant and coherent X-rays produced by a synchrotron light source. This enables fast data acquisition and enhanced image contrast for soft biological samples owing to the exploitation of phase contrast. In this Review, we provide an overview of the basics behind the technique, discuss its applications for biologists and provide an outlook on the future of this emerging technique for biology. We introduce the latest advances in the field, such as whole human organs imaged with micron resolution, using X-rays as a tool for virtual histology and resolving neuronal connections in the brain.
Collapse
Affiliation(s)
- Jonas Albers
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Angelika Svetlove
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Elizabeth Duke
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Artyukov I, Bellucci S, Kolesov V, Levin V, Morokov E, Polikarpov M, Petronyuk Y. Studies of Fractal Microstructure in Nanocarbon Polymer Composites. Polymers (Basel) 2024; 16:1354. [PMID: 38794548 PMCID: PMC11125066 DOI: 10.3390/polym16101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The in situ study of fractal microstructure in nanocarbon polymers is an actual task for their application and for the improvement in their functional properties. This article presents a visualization of the bulk structural features of the composites using pulsed acoustic microscopy and synchrotron X-ray microtomography. This article presents details of fractal structure formation using carbon particles of different sizes and shapes-exfoliated graphite, carbon platelets and nanotubes. Individual structural elements of the composite, i.e., conglomerations of the particles in the air capsule as well as their distribution in the composite volume, were observed at the micro- and nanoscale. We have considered the influence of particle architecture on the fractal formation and elastic properties of the composite. Acoustic and X-ray imaging results were compared to validate the carbon agglomeration.
Collapse
Affiliation(s)
- Igor Artyukov
- X-ray Optics Laboratory, Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Vladimir Kolesov
- Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia;
| | - Vadim Levin
- Laboratory of Acoustic Microscopy, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (V.L.); (E.M.)
| | - Egor Morokov
- Laboratory of Acoustic Microscopy, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (V.L.); (E.M.)
- Department of Physics and Mathematics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Maxim Polikarpov
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, 22607 Hamburg, Germany;
| | - Yulia Petronyuk
- Laboratory of Acoustic Microscopy, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (V.L.); (E.M.)
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia
| |
Collapse
|
5
|
Kairišs K, Sokolova N, Zilova L, Schlagheck C, Reinhardt R, Baumbach T, Faragó T, van de Kamp T, Wittbrodt J, Weinhardt V. Visualisation of gene expression within the context of tissues using an X-ray computed tomography-based multimodal approach. Sci Rep 2024; 14:8543. [PMID: 38609416 PMCID: PMC11015006 DOI: 10.1038/s41598-024-58766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The development of an organism is orchestrated by the spatial and temporal expression of genes. Accurate visualisation of gene expression patterns in the context of the surrounding tissues offers a glimpse into the mechanisms that drive morphogenesis. We developed correlative light-sheet fluorescence microscopy and X-ray computed tomography approach to map gene expression patterns to the whole organism`s 3D anatomy. We show that this multimodal approach is applicable to gene expression visualized by protein-specific antibodies and fluorescence RNA in situ hybridisation offering a detailed understanding of individual phenotypic variations in model organisms. Furthermore, the approach offers a unique possibility to identify tissues together with their 3D cellular and molecular composition in anatomically less-defined in vitro models, such as organoids. We anticipate that the visual and quantitative insights into the 3D distribution of gene expression within tissue architecture, by multimodal approach developed here, will be equally valuable for reference atlases of model organisms development, as well as for comprehensive screens, and morphogenesis studies of in vitro models.
Collapse
Affiliation(s)
- Kristaps Kairišs
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- HeiKa Graduate School On "Functional Materials", Heidelberg, Germany
| | - Natalia Sokolova
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
| | - Lucie Zilova
- Centre for Organismal Studies, 69120, Heidelberg, Germany
| | - Christina Schlagheck
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- HeiKa Graduate School On "Functional Materials", Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
| | - Robert Reinhardt
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tomáš Faragó
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | |
Collapse
|