1
|
Masanta S, Wiesyk A, Panja C, Pilch S, Ciesla J, Sipko M, De A, Enkhbaatar T, Maslanka R, Skoneczna A, Kucharczyk R. Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Redox Biol 2024; 73:103201. [PMID: 38795545 PMCID: PMC11140801 DOI: 10.1016/j.redox.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Reactive oxygen species (ROS), play important roles in cellular signaling, nonetheless are toxic at higher concentrations. Cells have many interconnected, overlapped or backup systems to neutralize ROS, but their regulatory mechanisms remain poorly understood. Here, we reveal an essential role for mitochondrial AMPylase Fmp40 from budding yeast in regulating the redox states of the mitochondrial 1-Cys peroxiredoxin Prx1, which is the only protein shown to neutralize H2O2 with the oxidation of the mitochondrial glutathione and the thioredoxin Trx3, directly involved in the reduction of Prx1. Deletion of FMP40 impacts a cellular response to H2O2 treatment that leads to programmed cell death (PCD) induction and an adaptive response involving up or down regulation of genes encoding, among others the catalase Cta1, PCD inducing factor Aif1, and mitochondrial redoxins Trx3 and Grx2. This ultimately perturbs the reduced glutathione and NADPH cellular pools. We further demonstrated that Fmp40 AMPylates Prx1, Trx3, and Grx2 in vitro and interacts with Trx3 in vivo. AMPylation of the threonine residue 66 in Trx3 is essential for this protein's proper endogenous level and its precursor forms' maturation under oxidative stress conditions. Additionally, we showed the Grx2 involvement in the reduction of Trx3 in vivo. Taken together, Fmp40, through control of the reduction of mitochondrial redoxins, regulates the hydrogen peroxide, GSH and NADPH signaling influencing the yeast cell survival.
Collapse
Affiliation(s)
- Suchismita Masanta
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Aneta Wiesyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Jaroslaw Ciesla
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Marta Sipko
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Abhipsita De
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland.
| |
Collapse
|
2
|
Discola KF, de Oliveira MA, Rosa Cussiol JR, Monteiro G, Bárcena JA, Porras P, Padilla CA, Guimarães BG, Netto LES. Structural Aspects of the Distinct Biochemical Properties of Glutaredoxin 1 and Glutaredoxin 2 from Saccharomyces cerevisiae. J Mol Biol 2009; 385:889-901. [DOI: 10.1016/j.jmb.2008.10.055] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 01/09/2023]
|
3
|
Silva GM, Netto LES, Discola KF, Piassa-Filho GM, Pimenta DC, Bárcena JA, Demasi M. Role of glutaredoxin 2 and cytosolic thioredoxins in cysteinyl-based redox modification of the 20S proteasome. FEBS J 2008; 275:2942-55. [PMID: 18435761 DOI: 10.1111/j.1742-4658.2008.06441.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The yeast 20S proteasome is subject to sulfhydryl redox alterations, such as the oxidation of cysteine residues (Cys-SH) into cysteine sulfenic acid (Cys-SOH), followed by S-glutathionylation (Cys-S-SG). Proteasome S-glutathionylation promotes partial loss of chymotrypsin-like activity and post-acidic cleavage without alteration of the trypsin-like proteasomal activity. Here we show that the 20S proteasome purified from stationary-phase cells was natively S-glutathionylated. Moreover, recombinant glutaredoxin 2 removes glutathione from natively or in vitro S-glutathionylated 20S proteasome, allowing the recovery of chymotrypsin-like activity and post-acidic cleavage. Glutaredoxin 2 deglutathionylase activity was dependent on its entry into the core particle, as demonstrated by stimulating S-glutathionylated proteasome opening. Under these conditions, deglutathionylation of the 20S proteasome and glutaredoxin 2 degradation were increased when compared to non-stimulated samples. Glutaredoxin 2 fragmentation by the 20S proteasome was evaluated by SDS-PAGE and mass spectrometry, and S-glutathionylation was evaluated by either western blot analyses with anti-glutathione IgG or by spectrophotometry with the thiol reactant 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. It was also observed in vivo that glutaredoxin 2 was ubiquitinated in cellular extracts of yeast cells grown in glucose-containing medium. Other cytoplasmic oxido-reductases, namely thioredoxins 1 and 2, were also active in 20S proteasome deglutathionylation by a similar mechanism. These results indicate for the first time that 20S proteasome cysteinyl redox modification is a regulated mechanism coupled to enzymatic deglutathionylase activity.
Collapse
Affiliation(s)
- Gustavo M Silva
- Instituto Butantan, Laboratório de Bioquímica e Biofísica, São Paulo, Brazil, and Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
4
|
Netto LES, de Oliveira MA, Monteiro G, Demasi APD, Cussiol JRR, Discola KF, Demasi M, Silva GM, Alves SV, Faria VG, Horta BB. Reactive cysteine in proteins: protein folding, antioxidant defense, redox signaling and more. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:180-193. [PMID: 17045551 DOI: 10.1016/j.cbpc.2006.07.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 07/13/2006] [Accepted: 07/31/2006] [Indexed: 01/11/2023]
Abstract
Cysteine plays structural roles in proteins and can also participate in electron transfer reactions, when some structural folds provide appropriated environments for stabilization of its sulfhydryl group in the anionic form, called thiolate (RS(-)). In contrast, sulfhydryl group of free cysteine has a relatively high pK(a) (8,5) and as a consequence is relatively inert for redox reaction in physiological conditions. Thiolate is considerable more powerful as nucleophilic agent than its protonated form, therefore, reactive cysteine are present mainly in its anionic form in proteins. In this review, we describe several processes in which reactive cysteine in proteins take part, showing a high degree of redox chemistry versatility.
Collapse
Affiliation(s)
- Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil.
| | - Marcos Antonio de Oliveira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Gisele Monteiro
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Ana Paula Dias Demasi
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| | - José Renato Rosa Cussiol
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Karen Fulan Discola
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo-SP, Brazil
| | - Gustavo Monteiro Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Simone Vidigal Alves
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Victor Genu Faria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Bruno Brasil Horta
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo-SP, Brazil
| |
Collapse
|
5
|
Barbosa JARG, Netto LES, Farah CS, Schenkman S, Meneghini R. The structural molecular biology network of the State of São Paulo, Brazil. AN ACAD BRAS CIENC 2006; 78:241-53. [PMID: 16710564 DOI: 10.1590/s0001-37652006000200006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes the achievements of the Structural Molecular Biology Network (SMolBNet), a collaborative program of structural molecular biology, centered in the State of São Paulo, Brazil, and supported by São Paulo State Funding Agency (FAPESP). It gathers twenty scientific groups and is coordinated by the scientific staff of the Center of Structural Molecular Biology, at the National Laboratory of Synchrotron Light (LNLS), in Campinas. The SMolBNet program has been aimed at 1) solving the structure of proteins of interest related to the research projects of the groups. In some cases, the choice has been to select proteins of unknown function or of possible novel structure obtained from the sequenced genomes of the FAPESP genomic program; 2) providing the groups with training in all the steps of the protein structure determination: gene cloning, protein expression, protein purification, protein crystallization and structure determination. Having begun in 2001, the program has been successful in both aims. Here, four groups reveal their participation in the program and describe the structural aspects of the proteins they have selected to study.
Collapse
Affiliation(s)
- João A R G Barbosa
- Laboratório Nacional de Luz Síncrotron, Centro de Biologia Molecular Estrutural, 13084-971 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|