1
|
Koehler C, Round A, Simader H, Suck D, Svergun D. Quaternary structure of the yeast Arc1p-aminoacyl-tRNA synthetase complex in solution and its compaction upon binding of tRNAs. Nucleic Acids Res 2013; 41:667-76. [PMID: 23161686 PMCID: PMC3592460 DOI: 10.1093/nar/gks1072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 11/16/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.
Collapse
MESH Headings
- Electrophoretic Mobility Shift Assay
- Glutamate-tRNA Ligase/chemistry
- Glutamate-tRNA Ligase/metabolism
- Methionine-tRNA Ligase/chemistry
- Methionine-tRNA Ligase/metabolism
- Models, Molecular
- Protein Structure, Tertiary
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Scattering, Small Angle
- X-Ray Diffraction
Collapse
Affiliation(s)
- Christine Koehler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Adam Round
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Hannes Simader
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Dietrich Suck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Dmitri Svergun
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| |
Collapse
|
3
|
Karanasios E, Simader H, Panayotou G, Suck D, Simos G. Molecular Determinants of the Yeast Arc1p–Aminoacyl-tRNA Synthetase Complex Assembly. J Mol Biol 2007; 374:1077-90. [DOI: 10.1016/j.jmb.2007.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/29/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
|
4
|
Simader H, Hothorn M, Köhler C, Basquin J, Simos G, Suck D. Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes. Nucleic Acids Res 2006; 34:3968-79. [PMID: 16914447 PMCID: PMC1557820 DOI: 10.1093/nar/gkl560] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The yeast aminoacyl-tRNA synthetase (aaRS) complex is formed by the methionyl- and glutamyl-tRNA synthetases (MetRS and GluRS, respectively) and the tRNA aminoacylation cofactor Arc1p. It is considered an evolutionary intermediate between prokaryotic aaRS and the multi- aaRS complex found in higher eukaryotes. While a wealth of structural information is available on the enzymatic domains of single aaRS, insight into complex formation between eukaryotic aaRS and associated protein cofactors is missing. Here we report crystal structures of the binary complexes between the interacting domains of Arc1p and MetRS as well as those of Arc1p and GluRS at resolutions of 2.2 and 2.05 Å, respectively. The data provide a complete structural model for ternary complex formation between the interacting domains of MetRS, GluRS and Arc1p. The structures reveal that all three domains adopt a glutathione S-transferase (GST)-like fold and that simultaneous interaction of Arc1p with GluRS and MetRS is mediated by the use of a novel interface in addition to a classical GST dimerization interaction. The results demonstrate a novel role for this fold as a heteromerization domain specific to eukaryotic aaRS, associated proteins and protein translation elongation factors.
Collapse
Affiliation(s)
| | | | | | | | - George Simos
- Department of Medicine, University of Thessaly22 Papakiriazi Street, Larissa, 41222, Greece
| | - Dietrich Suck
- To whom correspondence should be addressed. Tel: 0049 6221 387307; Fax: 0049 6221 387306;
| |
Collapse
|