1
|
Olaitan AO, Dureja C, Youngblom MA, Topf MA, Shen WJ, Gonzales-Luna AJ, Deshpande A, Hevener KE, Freeman J, Wilcox MH, Palmer KL, Garey KW, Pepperell CS, Hurdle JG. Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile. Nat Commun 2023; 14:4130. [PMID: 37438331 DOI: 10.1038/s41467-023-39429-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chetna Dureja
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Madison A Youngblom
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Madeline A Topf
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Wan-Jou Shen
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aditi Deshpande
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jane Freeman
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals Trust, Leeds, UK
- Healthcare Associated Infection Research Group, School of Medicine, University of Leeds, Leeds, UK
| | - Kelli L Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.
| |
Collapse
|
2
|
Baaity Z, Jamal W, Rotimi VO, Burián K, Leitsch D, Somogyvári F, Nagy E, Sóki J. Molecular characterization of metronidazole resistant Bacteroides strains from Kuwait. Anaerobe 2021; 69:102357. [PMID: 33713801 DOI: 10.1016/j.anaerobe.2021.102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Eleven metronidazole resistant Bacteroides and one newly classified Phocaeicola dorei strain from Kuwait were investigated for their resistance mechanisms and the emergence of their resistant plasmids. All but one strain harbored nimE genes on differently sized plasmids. Of the 11 nimE genes, 9 were preceded by full copies of the prototype ISBf6 insertion sequence element, one carried a truncated ISBf6 and one was activated by an additional copy of IS612B. Nucleotide sequencing results showed that the nimE ISBf6 distances were constant and all five different plasmids shared a common region, suggesting that (i) the nimE-ISBf6 configuration was inserted into an undisclosed common genetic element, (ii) over time, this common element was mutated by insertions and deletions, spreading the resultant plasmids. Of the 10 B. fragilis strains in this collection, 6 were also cfiA-positive, one with full imipenem resistance, indicating a tendency for multidrug resistance (MDR) among such isolates. The significant number of metronidazole resistant Bacteroides spp. and P. dorei strains with the MDR phenotype warns of difficulties in treatment and suggests promoting adherence to antibiotic stewardship recommendations in Kuwait.
Collapse
Affiliation(s)
- Zain Baaity
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Wafaa Jamal
- Department of Microbiology, Faculty of Medicine, University of Kuwait, Safat, Kuwait
| | - Vincent O Rotimi
- Department of Microbiology, Faculty of Medicine, University of Kuwait, Safat, Kuwait
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ferenc Somogyvári
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
4
|
Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 2013; 57:3767-74. [PMID: 23716049 DOI: 10.1128/aac.00386-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two multidrug-resistant Bacteroides fragilis clinical isolates contain and express a novel nim gene, nimJ, that is not recognized by the "universal" nim primers and can confer increased resistance to metronidazole when introduced into a susceptible strain on a multicopy plasmid. HMW615, an appendiceal isolate, contains at least two copies of nimJ on its genome, while HMW616, an isolate from a patient with sepsis, contains one genomic copy of nimJ. B. fragilis NimJ is phylogenetically closer to Prevotella baroniae NimI and Clostridium botulinum NimA than to the other known Bacteroides Nim proteins. The predicted protein structure of NimJ, based on fold recognition analysis, is consistent with the crystal structures derived for known Nim proteins, and specific amino acid residues important for substrate binding in the active site are conserved. This study demonstrates that the "universal" nim primers will not detect all nim genes with the ability to confer metronidazole resistance, but nimJ alone cannot account for the very high metronidazole MICs of these resistant clinical isolates.
Collapse
|
5
|
Alauzet C, Marchandin H, Lozniewski A. New insights into Prevotella diversity and medical microbiology. Future Microbiol 2011; 5:1695-718. [PMID: 21133690 DOI: 10.2217/fmb.10.126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In light of recent studies based on cultivation-independent methods, it appears that the diversity of Prevotella in human microbiota is greater than was previously assumed from cultivation-based studies, and that the implication of these bacteria in several human diseases was unrecognized. While some Prevotella taxa were found during opportunistic infections, changes in Prevotella abundance and diversity were discovered during dysbiosis-associated diseases. As member of the microbiota, Prevotella may also be considered as a reservoir for resistance genes. Greater knowledge on Prevotella diversity, as well as new insights into its pathogenic potential and implication in dysbiosis are expected from the use of human microbe identification microarrays, from whole-genome sequence analyse, and from the NIH Human Microbiome Project data. New approaches, including molecular-based methods, could contribute to improve the diagnosis of Prevotella infections.
Collapse
Affiliation(s)
- Corentine Alauzet
- Laboratoire de Bactériologie, EA 4369, Faculté de Médecine, Nancy Université, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
6
|
Biophysical characterization and mutational analysis of the antibiotic resistance protein NimA from Deinococcus radiodurans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:967-76. [PMID: 20096385 DOI: 10.1016/j.bbapap.2010.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 11/23/2022]
Abstract
Metronidazole (MTZ) is an antibiotic commonly used to treat anaerobic bacterial infections in humans and animals. Antibiotic resistance toward this class of 5-nitroimidazole (5-Ni) drug derivatives has been related to the Nim genes thought to encode a reductase. Here we report the biophysical characteristics of the NimA protein from Deinococcus radiodurans (DrNimA) binding to MTZ and three other 5-Ni drugs. The interaction energies of the protein and antibiotic are studied by isothermal titration calorimetry (ITC) and with free energy and linear interaction energy (LIE) calculations, where the latter method revealed that the antibiotic binding is mainly of hydrophobic character. ITC measurements further found that one DrNimA dimer has two antibiotic binding sites which were not affected by mutation of the reactive His71. The observed association constants (K(a)) were in the range of 5.1-4910(4)M(-1) and the enthalpy release upon binding to DrNimA for the four drugs studied was relatively low (approximately -1 kJ/mol) but still measurable. The drug binding is mainly entropy driven and along with the hydrophobic drug binding site found by crystallography, this possibly explains the low observed enthalpy values. The effect of the His71 mutation and the presence of MTZ were studied by differential scanning calorimetry (DSC). Native DrNimA is a yellow colored protein where the interaction from His71 to the cofactor is thought to be responsible for the coloring. Mutations of His71 to Ala, Ser, Leu or Asp all gave transparent, colorless protein solutions, and the two mutant crystal structures of DrNimA-H71A and DrNimA-H71S presented revealed no cofactor binding.
Collapse
|