1
|
Sviridova E, Rezacova P, Bondar A, Veverka V, Novak P, Schenk G, Svergun DI, Kuta Smatanova I, Bumba L. Structural basis of the interaction between the putative adhesion-involved and iron-regulated FrpD and FrpC proteins of Neisseria meningitidis. Sci Rep 2017; 7:40408. [PMID: 28084396 PMCID: PMC5233953 DOI: 10.1038/srep40408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/06/2016] [Indexed: 01/14/2023] Open
Abstract
The iron-regulated protein FrpD from Neisseria meningitidis is an outer membrane lipoprotein that interacts with very high affinity (Kd ~ 0.2 nM) with the N-terminal domain of FrpC, a Type I-secreted protein from the Repeat in ToXin (RTX) protein family. In the presence of Ca2+, FrpC undergoes Ca2+ -dependent protein trans-splicing that includes an autocatalytic cleavage of the Asp414-Pro415 peptide bond and formation of an Asp414-Lys isopeptide bond. Here, we report the high-resolution structure of FrpD and describe the structure-function relationships underlying the interaction between FrpD and FrpC1-414. We identified FrpD residues involved in FrpC1-414 binding, which enabled localization of FrpD within the low-resolution SAXS model of the FrpD-FrpC1-414 complex. Moreover, the trans-splicing activity of FrpC resulted in covalent linkage of the FrpC1-414 fragment to plasma membrane proteins of epithelial cells in vitro, suggesting that formation of the FrpD-FrpC1-414 complex may be involved in the interaction of meningococci with the host cell surface.
Collapse
Affiliation(s)
- Ekaterina Sviridova
- Faculty of Science, University of South Bohemia Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.,Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Pavlina Rezacova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Alexey Bondar
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Gundolf Schenk
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Dmitri I Svergun
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Ivana Kuta Smatanova
- Faculty of Science, University of South Bohemia Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.,Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
2
|
Černý J, Biedermannová L, Mikulecký P, Zahradník J, Charnavets T, Šebo P, Schneider B. Redesigning protein cavities as a strategy for increasing affinity in protein-protein interaction: interferon- γ receptor 1 as a model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:716945. [PMID: 26060819 PMCID: PMC4427845 DOI: 10.1155/2015/716945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/22/2014] [Accepted: 12/28/2014] [Indexed: 12/04/2022]
Abstract
Combining computational and experimental tools, we present a new strategy for designing high affinity variants of a binding protein. The affinity is increased by mutating residues not at the interface, but at positions lining internal cavities of one of the interacting molecules. Filling the cavities lowers flexibility of the binding protein, possibly reducing entropic penalty of binding. The approach was tested using the interferon-γ receptor 1 (IFNγR1) complex with IFNγ as a model. Mutations were selected from 52 amino acid positions lining the IFNγR1 internal cavities by using a protocol based on FoldX prediction of free energy changes. The final four mutations filling the IFNγR1 cavities and potentially improving the affinity to IFNγ were expressed, purified, and refolded, and their affinity towards IFNγ was measured by SPR. While individual cavity mutations yielded receptor constructs exhibiting only slight increase of affinity compared to WT, combinations of these mutations with previously characterized variant N96W led to a significant sevenfold increase. The affinity increase in the high affinity receptor variant N96W+V35L is linked to the restriction of its molecular fluctuations in the unbound state. The results demonstrate that mutating cavity residues is a viable strategy for designing protein variants with increased affinity.
Collapse
Affiliation(s)
- Jiří Černý
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lada Biedermannová
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Pavel Mikulecký
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Zahradník
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tatsiana Charnavets
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Peter Šebo
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
3
|
Bumba L, Sviridova E, Kutá Smatanová I, Řezáčová P, Veverka V. Backbone resonance assignments of the outer membrane lipoprotein FrpD from Neisseria meningitidis. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:53-55. [PMID: 23225222 DOI: 10.1007/s12104-012-9451-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
The iron-regulated FrpD protein is a unique lipoprotein embedded into the outer membrane of the Gram-negative bacterium Neisseria meningitidis. The biological function of FrpD remains unknown but might consist in anchoring to the bacterial cell surface the Type I-secreted FrpC protein, which belongs to a Repeat in ToXins (RTX) protein family and binds FrpD with very high affinity (K(d) = 0.2 nM). Here, we report the backbone (1)H, (13)C, and (15)N chemical shift assignments for the FrpD(43-271) protein that allow us to characterize the intimate interaction between FrpD and the N-terminal domain of FrpC.
Collapse
Affiliation(s)
- Ladislav Bumba
- Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, Prague, 142 20, Czech Republic
| | | | | | | | | |
Collapse
|
4
|
Mikulecký P, Černý J, Biedermannová L, Petroková H, Kuchař M, Vondrášek J, Malý P, Šebo P, Schneider B. Increasing affinity of interferon-γ receptor 1 to interferon-γ by computer-aided design. BIOMED RESEARCH INTERNATIONAL 2013; 2013:752514. [PMID: 24199198 PMCID: PMC3807708 DOI: 10.1155/2013/752514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
We describe a computer-based protocol to design protein mutations increasing binding affinity between ligand and its receptor. The method was applied to mutate interferon-γ receptor 1 (IFN-γ-Rx) to increase its affinity to natural ligand IFN-γ, protein important for innate immunity. We analyzed all four available crystal structures of the IFN-γ-Rx/IFN-γ complex to identify 40 receptor residues forming the interface with IFN-γ. For these 40 residues, we performed computational mutation analysis by substituting each of the interface receptor residues by the remaining standard amino acids. The corresponding changes of the free energy were calculated by a protocol consisting of FoldX and molecular dynamics calculations. Based on the computed changes of the free energy and on sequence conservation criteria obtained by the analysis of 32 receptor sequences from 19 different species, we selected 14 receptor variants predicted to increase the receptor affinity to IFN-γ. These variants were expressed as recombinant proteins in Escherichia coli, and their affinities to IFN-γ were determined experimentally by surface plasmon resonance (SPR). The SPR measurements showed that the simple computational protocol succeeded in finding two receptor variants with affinity to IFN-γ increased about fivefold compared to the wild-type receptor.
Collapse
Affiliation(s)
- Pavel Mikulecký
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Černý
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lada Biedermannová
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Hana Petroková
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Milan Kuchař
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Vondrášek
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Petr Malý
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Peter Šebo
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology AS CR, v. v. i., Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|