1
|
Chen Z, Chen J, Ni D, Xu W, Zhang W, Mu W. Microbial dextran-hydrolyzing enzyme: Properties, structural features, and versatile applications. Food Chem 2024; 437:137951. [PMID: 37951078 DOI: 10.1016/j.foodchem.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Dextran, an α-glucan mainly composed of (α1 → 6) linkages, has been widely applied in the food, cosmetic, and medicine industries. Dextranase can hydrolyze dextran to synthesize oligodextrans, which show prominent properties and promising applications in the food industry. Dextranases are widely distributed in bacteria, yeasts, and fungus, and classified into glycoside hydrolase (GH) 13, 15, 31, 49, and 66 families according to their sequence similarity, structural features, and reaction types. Dextranase, as a dextran-hydrolyzing enzyme, displays great application potential in the sugar-making, oral health care, medicine, and biotechnology industries. Here we mainly focused on presenting the enzymatic properties, structural features, and versatile (potential) applications of dextranase. To date, seven crystal structures of dextranases from GH 13, 15, 31, 49, and 66 families have been successfully solved. However, their molecular mechanisms for hydrolyzing dextran, especially on the size determinants of the hydrolysates, remain largely unknown. Additionally, the classification, microbial distribution, and immobilization technology of dextranase were also discussed in detail. This review discussed dextranase from different aspects with the ambition to present how they constitute the groundwork for promising future developments.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Hu X, Xia B, Ru W, Zhang Y, Yang J, Zhang H. Research progress on structure and catalytic mechanism of dextranase. EFOOD 2023. [DOI: 10.1002/efd2.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xue‐Qin Hu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Bing‐Bing Xia
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Wei‐Juan Ru
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Yu‐Xin Zhang
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Jing‐Wen Yang
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Hong‐Bin Zhang
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| |
Collapse
|
3
|
Suzuki N, Kim YM, Momma M, Fujimoto Z, Kobayashi M, Kimura A, Funane K. Crystallization and preliminary X-ray crystallographic analysis of cycloisomaltooligosaccharide glucanotransferase from Bacillus circulans T-3040. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:946-9. [PMID: 23908050 PMCID: PMC3729181 DOI: 10.1107/s174430911301991x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/18/2013] [Indexed: 11/10/2022]
Abstract
Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase (BcCITase) catalyses an intramolecular transglucosylation reaction and produces cycloisomaltooligosaccharides from dextran. BcCITase was overexpressed in Escherichia coli in two different forms and crystallized by the sitting-drop vapour-diffusion method. The crystal of BcCITase bearing an N-terminal His₆ tag diffracted to a resolution of 2.3 Å and belonged to space group P3₁21, containing a single molecule in the asymmetric unit. The crystal of BcCITase bearing a C-terminal His6 tag diffracted to a resolution of 1.9 Å and belonged to space group P2₁2₁2₁, containing two molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Young-Min Kim
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nisi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Mitsuru Momma
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Mikihiko Kobayashi
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
- Department of Food and Health Science, Jissen Women’s University, 4-1-1 Osakaue, Hino 191-8510, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nisi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Kazumi Funane
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| |
Collapse
|
4
|
Kim YM, Yamamoto E, Kang MS, Nakai H, Saburi W, Okuyama M, Mori H, Funane K, Momma M, Fujimoto Z, Kobayashi M, Kim D, Kimura A. Bacteroides thetaiotaomicronVPI-5482 glycoside hydrolase family 66 homolog catalyzes dextranolytic and cyclization reactions. FEBS J 2012; 279:3185-91. [DOI: 10.1111/j.1742-4658.2012.08698.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Kim YM, Kiso Y, Muraki T, Kang MS, Nakai H, Saburi W, Lang W, Kang HK, Okuyama M, Mori H, Suzuki R, Funane K, Suzuki N, Momma M, Fujimoto Z, Oguma T, Kobayashi M, Kim D, Kimura A. Novel dextranase catalyzing cycloisomaltooligosaccharide formation and identification of catalytic amino acids and their functions using chemical rescue approach. J Biol Chem 2012; 287:19927-35. [PMID: 22461618 PMCID: PMC3370177 DOI: 10.1074/jbc.m111.339036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 03/27/2012] [Indexed: 11/06/2022] Open
Abstract
A novel endodextranase from Paenibacillus sp. (Paenibacillus sp. dextranase; PsDex) was found to mainly produce isomaltotetraose and small amounts of cycloisomaltooligosaccharides (CIs) with a degree of polymerization of 7-14 from dextran. The 1,696-amino acid sequence belonging to the glycosyl hydrolase family 66 (GH-66) has a long insertion (632 residues; Thr(451)-Val(1082)), a portion of which shares identity (35% at Ala(39)-Ser(1304) of PsDex) with Pro(32)-Ala(755) of CI glucanotransferase (CITase), a GH-66 enzyme that catalyzes the formation of CIs from dextran. This homologous sequence (Val(837)-Met(932) for PsDex and Tyr(404)-Tyr(492) for CITase), similar to carbohydrate-binding module 35, was not found in other endodextranases (Dexs) devoid of CITase activity. These results support the classification of GH-66 enzymes into three types: (i) Dex showing only dextranolytic activity, (ii) Dex catalyzing hydrolysis with low cyclization activity, and (iii) CITase showing CI-forming activity with low dextranolytic activity. The fact that a C-terminal truncated enzyme (having Ala(39)-Ser(1304)) has 50% wild-type PsDex activity indicates that the C-terminal 392 residues are not involved in hydrolysis. GH-66 enzymes possess four conserved acidic residues (Asp(189), Asp(340), Glu(412), and Asp(1254) of PsDex) of catalytic candidates. Their amide mutants decreased activity (1⁄1,500 to 1⁄40,000 times), and D1254N had 36% activity. A chemical rescue approach was applied to D189A, D340G, and E412Q using α-isomaltotetraosyl fluoride with NaN(3). D340G or E412Q formed a β- or α-isomaltotetraosyl azide, respectively, strongly indicating Asp(340) and Glu(412) as a nucleophile and acid/base catalyst, respectively. Interestingly, D189A synthesized small sized dextran from α-isomaltotetraosyl fluoride in the presence of NaN(3).
Collapse
Affiliation(s)
- Young-Min Kim
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yoshiaki Kiso
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tomoe Muraki
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Min-Sun Kang
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiroyuki Nakai
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Wataru Saburi
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Weeranuch Lang
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hee-Kwon Kang
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masayuki Okuyama
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Haruhide Mori
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Ryuichiro Suzuki
- the National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan
| | - Kazumi Funane
- the National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan
| | - Nobuhiro Suzuki
- the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Mitsuru Momma
- the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Zui Fujimoto
- the National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Tetsuya Oguma
- the Noda Institute for Scientific Research, 399 Noda, Noda 278-0037, Japan
| | - Mikihiko Kobayashi
- the Department of Food and Health Science, Jissenn Women's University, Hino 191-8510, Japan, and
| | - Doman Kim
- the School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Atsuo Kimura
- From the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
6
|
Suzuki N, Kim YM, Fujimoto Z, Momma M, Okuyama M, Mori H, Funane K, Kimura A. Structural elucidation of dextran degradation mechanism by streptococcus mutans dextranase belonging to glycoside hydrolase family 66. J Biol Chem 2012; 287:19916-26. [PMID: 22337884 DOI: 10.1074/jbc.m112.342444] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dextranase is an enzyme that hydrolyzes dextran α-1,6 linkages. Streptococcus mutans dextranase belongs to glycoside hydrolase family 66, producing isomaltooligosaccharides of various sizes and consisting of at least five amino acid sequence regions. The crystal structure of the conserved fragment from Gln(100) to Ile(732) of S. mutans dextranase, devoid of its N- and C-terminal variable regions, was determined at 1.6 Å resolution and found to contain three structural domains. Domain N possessed an immunoglobulin-like β-sandwich fold; domain A contained the enzyme's catalytic module, comprising a (β/α)(8)-barrel; and domain C formed a β-sandwich structure containing two Greek key motifs. Two ligand complex structures were also determined, and, in the enzyme-isomaltotriose complex structure, the bound isomaltooligosaccharide with four glucose moieties was observed in the catalytic glycone cleft and considered to be the transglycosylation product of the enzyme, indicating the presence of four subsites, -4 to -1, in the catalytic cleft. The complexed structure with 4',5'-epoxypentyl-α-d-glucopyranoside, a suicide substrate of the enzyme, revealed that the epoxide ring reacted to form a covalent bond with the Asp(385) side chain. These structures collectively indicated that Asp(385) was the catalytic nucleophile and that Glu(453) was the acid/base of the double displacement mechanism, in which the enzyme showed a retaining catalytic character. This is the first structural report for the enzyme belonging to glycoside hydrolase family 66, elucidating the enzyme's catalytic machinery.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|