1
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
2
|
Zheng W, Jin F, Wang F, Wang L, Fu S, Pan Z, Long H. Analysis of eEF1A2 gene expression and copy number in cervical carcinoma. Medicine (Baltimore) 2023; 102:e32559. [PMID: 36637958 PMCID: PMC9839279 DOI: 10.1097/md.0000000000032559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To explore and analyze the expression of eukaryotic translation elongation factor 1 alpha 2 (eEF1A2) gene in cervical cancer tissues, its relationship with patient survival, gene mutations, and changes in copy number in cervical cancer and chronic cervicitis tissues. METHODS The expression of the eEF1A2 gene in cervical cancer and its relationship with patient survival were analyzed using gene expression profile interactive analysis. Changes in eEF1A2 expression in cervical cancer tissues were analyzed using cBioPortal, a portal for cancer genomics analysis. The eEF1A2 copy number in cervical cancer tissues and chronic cervicitis tissues was determined by real-time fluorescence quantitative polymerase chain reaction. The relationship between the expression of eEF1A2 protein and the clinical stage, pathological grade, and patient survival of cervical cancer was analyzed by the database: The Human Protein Atlas, an integrated repository portal for tumor-immune system interactions. RESULTS Gene expression profile interactive analysis database analysis showed no significant differences in the expression of eEF1A2 between cervical cancer and normal cervical tissues (P > .05). The eEF1A2 gene expression level was not correlated with the survival of cervical cancer patients (P > .05). Analysis of the cBioPortal database showed that 18 of 297 cervical cancer patients had eEF1A2 gene changes, including missense mutation, splice mutation, amplification, and messenger RNA increase. There was no significant difference in eEF1A2 gene copy number between cervical cancer and chronic cervicitis (P > .05). The Human Protein Atlas and an integrated repository portal for tumor-immune system interactions database analysis of immunohistochemical data showed that eEF1A2 protein expression was no significant difference in clinical stage, pathological grade and patient survival of cervical cancer (P > .05). CONCLUSION The eEF1A2 gene was mutated in cervical cancer tissues. The eEF1A2 gene copy number was not associated with changes in the expression of the eEF1A2 gene in cervical cancer tissues.
Collapse
Affiliation(s)
- Weinan Zheng
- Department of Human Anatomy, Histology and Embryology, Chengdu Medical College, Chengdu City, Sichuan Province, China
| | - Fuyuan Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi City, Xinjiang Province, China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi City, Xinjiang Province, China
| | - Luyue Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi City, Xinjiang Province, China
| | - Shaowei Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi City, Xinjiang Province, China
| | - Zemin Pan
- Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi City, Xinjiang Province, China
| | - Haichen Long
- Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi City, Xinjiang Province, China
- Department of Biochemistry and Molecular Biology, Shihezi University School of Medicine (Branch College in Tarim University), Tarim University, Alaer City, Xinjiang Province, China
- * Correspondence: Haichen Long, Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi City, Xinjiang Province, China (e-mail: )
| |
Collapse
|
3
|
Negrutskii B, Shalak V, Novosylna O, Porubleva L, Lozhko D, El'skaya A. The eEF1 family of mammalian translation elongation factors. BBA ADVANCES 2022; 3:100067. [PMID: 37082266 PMCID: PMC10074971 DOI: 10.1016/j.bbadva.2022.100067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The eEF1 family of mammalian translation elongation factors is comprised of the two variants of eEF1A (eEF1A1 and eEF1A2), and the eEF1B complex. The latter consists of eEF1Bα, eEF1Bβ, and eEF1Bγ subunits. The two eEF1A variants have similar translation activity but may differ with respect to their secondary, "moonlighting" functions. This variability is underlined by the difference in the spatial organization of eEF1A1 and eEF1A2, and also possibly by the differences in their post-translational modifications. Here, we review the data on the spatial organization and post-translation modifications of eEF1A1 and eEF1A2, and provide examples of their involvement in various processes in addition to translation. We also describe the structural models of eEF1B subunits, their organization in the subcomplexes, and the trimeric model of the entire eEF1B complex. We discuss the functional consequences of such an assembly into a complex as well as the involvement of individual subunits in non-translational processes.
Collapse
Affiliation(s)
- B.S. Negrutskii
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
- Aarhus Institute of Advanced Sciences, Høegh-Guldbergs Gade 6B, DK–8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - V.F. Shalak
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - O.V. Novosylna
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - L.V. Porubleva
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - D.M. Lozhko
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - A.V. El'skaya
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| |
Collapse
|
4
|
Hou Y, Lu H, Li J, Guan Z, Zhang J, Zhang W, Yin C, Sun L, Zhang Y, Jiang H. A photoaffinity labeling strategy identified EF1A1 as a binding protein of cyclic dinucleotide 2'3'-cGAMP. Cell Chem Biol 2021; 29:133-144.e20. [PMID: 34478637 DOI: 10.1016/j.chembiol.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 01/12/2023]
Abstract
2'3'-cyclic GMP-AMP (2'3'-cGAMP), generated by cyclic GMP-AMP synthase (cGAS) under activation by cytosolic DNA, has a vital role in innate immune response via its receptor protein stimulator of interferon genes (STING) to fight viral infections and tumors. In order to have a complete understanding of biological functions of 2'3'-cGAMP, it is important to find out whether 2'3'-cGAMP has other unrevealed binding proteins present in mammalian cells and executes unknown functions. Here we report the 2'3'-cGAMP-based photoaffinity probes that capture and isolate 2'3'-cGAMP-binding proteins. These probes enable the identification of some potential 2'3'-cGAMP-binding proteins from HeLa cells. EF1A1, an essential protein regulating protein synthesis, is further validated to associate with 2'3'-cGAMP in vitro and in cells to impede protein synthesis. Thus, our studies provide a powerful approach to enable identification of the 2'3'-cGAMP interactome, discover unknown functions of 2'3'-cGAMP, and understand its physiological/pathological roles in tumor immunity and immune-related diseases.
Collapse
Affiliation(s)
- Yingjie Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxin Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhenyu Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changsong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Rawle DJ, Li D, Wu Z, Wang L, Choong M, Lor M, Reid RC, Fairlie DP, Harris J, Tachedjian G, Poulsen SA, Harrich D. Oxazole-Benzenesulfonamide Derivatives Inhibit HIV-1 Reverse Transcriptase Interaction with Cellular eEF1A and Reduce Viral Replication. J Virol 2019; 93:e00239-19. [PMID: 30918071 PMCID: PMC6613760 DOI: 10.1128/jvi.00239-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
HIV-1 replication requires direct interaction between HIV-1 reverse transcriptase (RT) and cellular eukaryotic translation elongation factor 1A (eEF1A). Our previous work showed that disrupting this interaction inhibited HIV-1 uncoating, reverse transcription, and replication, indicating its potential as an anti-HIV-1 target. In this study, we developed a sensitive, live-cell split-luciferase complementation assay (NanoBiT) to quantitatively measure inhibition of HIV-1 RT interaction with eEF1A. We used this to screen a small molecule library and discovered small-molecule oxazole-benzenesulfonamides (C7, C8, and C9), which dose dependently and specifically inhibited the HIV-1 RT interaction with eEF1A. These compounds directly bound to HIV-1 RT in a dose-dependent manner, as assessed by a biolayer interferometry (BLI) assay, but did not bind to eEF1A. These oxazole-benzenesulfonamides did not inhibit enzymatic activity of recombinant HIV-1 RT in a homopolymer assay but did inhibit reverse transcription and infection of both wild-type (WT) and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 in a dose-dependent manner in HEK293T cells. Infection of HeLa cells was significantly inhibited by the oxazole-benzenesulfonamides, and the antiviral activity was most potent against replication stages before 8 h postinfection. In human primary activated CD4+ T cells, C7 inhibited HIV-1 infectivity and replication up to 6 days postinfection. The data suggest a novel mechanism of HIV-1 inhibition and further elucidate how the RT-eEF1A interaction is important for HIV-1 replication. These compounds provide potential to develop a new class of anti-HIV-1 drugs to treat WT and NNRTI-resistant strains in people infected with HIV.IMPORTANCE Antiretroviral drugs protect many HIV-positive people, but their success can be compromised by drug-resistant strains. To combat these strains, the development of new classes of HIV-1 inhibitors is essential and a priority in the field. In this study, we identified small molecules that bind directly to HIV-1 reverse transcriptase (RT) and inhibit its interaction with cellular eEF1A, an interaction which we have previously identified as crucial for HIV-1 replication. These compounds inhibit intracellular HIV-1 reverse transcription and replication of WT HIV-1, as well as HIV-1 mutants that are resistant to current RT inhibitors. A novel mechanism of action involving inhibition of the HIV-1 RT-eEF1A interaction is an important finding and a potential new way to combat drug-resistant HIV-1 strains in infected people.
Collapse
Affiliation(s)
- Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zhonglan Wu
- Ningxia Center for Disease Control and Prevention, Ningxia, China
| | - Lu Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Marcus Choong
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomolecular Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan Harris
- School of Biomolecular Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gilda Tachedjian
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
6
|
eEF1A demonstrates paralog specific effects on HIV-1 reverse transcription efficiency. Virology 2019; 530:65-74. [DOI: 10.1016/j.virol.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/23/2022]
|
7
|
Novosylna O, Doyle A, Vlasenko D, Murphy M, Negrutskii B, El'skaya A. Comparison of the ability of mammalian eEF1A1 and its oncogenic variant eEF1A2 to interact with actin and calmodulin. Biol Chem 2017; 398:113-124. [PMID: 27483363 DOI: 10.1515/hsz-2016-0172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/26/2016] [Indexed: 11/15/2022]
Abstract
The question as to why a protein exerts oncogenic properties is answered mainly by well-established ideas that these proteins interfere with cellular signaling pathways. However, the knowledge about structural and functional peculiarities of the oncoproteins causing these effects is far from comprehensive. The 97.5% homologous tissue-specific A1 and A2 isoforms of mammalian translation elongation factor eEF1A represent an interesting model to study a difference between protein variants of a family that differ in oncogenic potential. We propose that the different oncogenic impact of A1 and A2 might be explained by differences in their ability to communicate with their respective cellular partners. Here we probed this hypothesis by studying the interaction of eEF1A with two known partners - calmodulin and actin. Indeed, an inability of the A2 isoform to interact with calmodulin is shown, while calmodulin is capable of binding A1 and interferes with its tRNA-binding and actin-bundling activities in vitro. Both A1 and A2 variants revealed actin-bundling activity; however, the form of bundles formed in the presence of A1 or A2 was distinctly different. Thus, a potential inability of A2 to be controlled by Ca2+-mediated regulatory systems is revealed.
Collapse
|
8
|
Losada A, Muñoz-Alonso MJ, García C, Sánchez-Murcia PA, Martínez-Leal JF, Domínguez JM, Lillo MP, Gago F, Galmarini CM. Translation Elongation Factor eEF1A2 is a Novel Anticancer Target for the Marine Natural Product Plitidepsin. Sci Rep 2016; 6:35100. [PMID: 27713531 PMCID: PMC5054363 DOI: 10.1038/srep35100] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022] Open
Abstract
eEF1A2 is one of the isoforms of the alpha subunit of the eukaryotic Elongation Factor 1. It is overexpressed in human tumors and is endowed with oncogenic properties, favoring tumor cell proliferation while inhibiting apoptosis. We demonstrate that plitidepsin, an antitumor agent of marine origin that has successfully completed a phase-III clinical trial for multiple myeloma, exerts its antitumor activity by targeting eEF1A2. The drug interacts with eEF1A2 with a KD of 80 nM and a target residence time of circa 9 min. This protein was also identified as capable of binding [14C]-plitidepsin in a cell lysate from K-562 tumor cells. A molecular modelling approach was used to identify a favorable binding site for plitidepsin at the interface between domains 1 and 2 of eEF1A2 in the GTP conformation. Three tumor cell lines selected for at least 100-fold more resistance to plitidepsin than their respective parental cells showed reduced levels of eEF1A2 protein. Ectopic expression of eEF1A2 in resistant cells restored the sensitivity to plitidepsin. FLIM-phasor FRET experiments demonstrated that plitidepsin localizes in tumor cells sufficiently close to eEF1A2 as to suggest the formation of drug-protein complexes in living cells. Altogether, our results strongly suggest that eEF1A2 is the primary target of plitidepsin.
Collapse
Affiliation(s)
- Alejandro Losada
- Departamento de Biología Celular y Farmacogenómica, Pharma Mar S.A., Colmenar Viejo, Madrid, Spain
| | - María José Muñoz-Alonso
- Departamento de Biología Celular y Farmacogenómica, Pharma Mar S.A., Colmenar Viejo, Madrid, Spain
| | - Carolina García
- Departamento de Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Madrid, Spain
| | - Pedro A Sánchez-Murcia
- Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Madrid, Spain
| | | | - Juan Manuel Domínguez
- Departamento de Biología Celular y Farmacogenómica, Pharma Mar S.A., Colmenar Viejo, Madrid, Spain
| | - M Pilar Lillo
- Departamento de Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Madrid, Spain
| | - Federico Gago
- Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Madrid, Spain
| | - Carlos M Galmarini
- Departamento de Biología Celular y Farmacogenómica, Pharma Mar S.A., Colmenar Viejo, Madrid, Spain
| |
Collapse
|
9
|
Trosiuk TV, Shalak VF, Szczepanowski RH, Negrutskii BS, El'skaya AV. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα. FEBS J 2015; 283:484-97. [PMID: 26587907 DOI: 10.1111/febs.13599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.
Collapse
Affiliation(s)
- Tetiana V Trosiuk
- State Key Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vyacheslav F Shalak
- State Key Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Boris S Negrutskii
- State Key Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anna V El'skaya
- State Key Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Abbas W, Kumar A, Herbein G. The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections. Front Oncol 2015; 5:75. [PMID: 25905039 PMCID: PMC4387925 DOI: 10.3389/fonc.2015.00075] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic translation elongation factors 1 alpha, eEF1A1 and eEF1A2, are not only translation factors but also pleiotropic proteins that are highly expressed in human tumors, including breast cancer, ovarian cancer, and lung cancer. eEF1A1 modulates cytoskeleton, exhibits chaperone-like activity and also controls cell proliferation and cell death. In contrast, eEF1A2 protein favors oncogenesis as shown by the fact that overexpression of eEF1A2 leads to cellular transformation and gives rise to tumors in nude mice. The eEF1A2 protein stimulates the phospholipid signaling and activates the Akt-dependent cell migration and actin remodeling that ultimately favors tumorigenesis. In contrast, inactivation of eEF1A proteins leads to immunodeficiency, neural and muscular defects, and favors apoptosis. Finally, eEF1A proteins interact with several viral proteins resulting in enhanced viral replication, decreased apoptosis, and increased cellular transformation. This review summarizes the recent findings on eEF1A proteins indicating that eEF1A proteins play a critical role in numerous human diseases through enhancement of oncogenesis, blockade of apoptosis, and increased viral pathogenesis.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences , Lahore , Pakistan
| | - Amit Kumar
- UPRES EA 4266, Laboratory of Pathogens and Inflammation, Department of Virology, CHRU Besançon, Université de Franche-Comté , Besançon , France
| | - Georges Herbein
- UPRES EA 4266, Laboratory of Pathogens and Inflammation, Department of Virology, CHRU Besançon, Université de Franche-Comté , Besançon , France
| |
Collapse
|
11
|
Crepin T, Shalak VF, Yaremchuk AD, Vlasenko DO, McCarthy A, Negrutskii BS, Tukalo MA, El'skaya AV. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes. Nucleic Acids Res 2014; 42:12939-48. [PMID: 25326326 PMCID: PMC4227793 DOI: 10.1093/nar/gku974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon–anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the ‘GTP’- and ‘GDP’-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis.
Collapse
Affiliation(s)
- Thibaut Crepin
- University of Grenoble Alpes, UVHCI, F-38000 Grenoble, France CNRS, UVHCI, F-38000 Grenoble, France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Vyacheslav F Shalak
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Anna D Yaremchuk
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France
| | - Dmytro O Vlasenko
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Andrew McCarthy
- Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France
| | - Boris S Negrutskii
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Michail A Tukalo
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Anna V El'skaya
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| |
Collapse
|
12
|
El'skaya AV, Negrutskii BS, Shalak VF, Vislovukh AA, Vlasenko DO, Novosylna AV, Lukash TO, Veremieva MV. Specific features of protein biosynthesis in higher eukaryotes. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.000818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. V. El'skaya
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - B. S. Negrutskii
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. F. Shalak
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. A. Vislovukh
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - D. O. Vlasenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. V. Novosylna
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - T. O. Lukash
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - M. V. Veremieva
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|