1
|
Joo H, Eom H, Cho Y, Rho M, Song WJ. Discovery and Characterization of Polymyxin-Resistance Genes pmrE and pmrF from Sediment and Seawater Microbiome. Microbiol Spectr 2023; 11:e0273622. [PMID: 36602384 PMCID: PMC9927302 DOI: 10.1128/spectrum.02736-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are the last-line antibiotics used to treat Gram-negative pathogens. Thus, the discovery and biochemical characterization of the resistance genes against polymyxins are urgently needed for diagnosis, treatment, and novel antibiotic design. Herein, we report novel polymyxin-resistance genes identified from sediment and seawater microbiome. Despite their low sequence identity against the known pmrE and pmrF, they show in vitro activities in UDP-glucose oxidation and l-Ara4N transfer to undecaprenyl phosphate, respectively, which occur as the part of lipid A modification that leads to polymyxin resistance. The expression of pmrE and pmrF also showed substantially high MICs in the presence of vanadate ions, indicating that they constitute polymyxin resistomes. IMPORTANCE Polymyxins are one of the last-resort antibiotics. Polymyxin resistance is a severe threat to combat multidrug-resistant pathogens. Thus, up-to-date identification and understanding of the related genes are crucial. Herein, we performed structure-guided sequence and activity analysis of five putative polymyxin-resistant metagenomes. Despite relatively low sequence identity to the previously reported polymyxin-resistance genes, at least four out of five discovered genes show reactivity essential for lipid A modification and polymyxin resistance, constituting antibiotic resistomes.
Collapse
Affiliation(s)
- Hwanjin Joo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunuk Eom
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Youna Cho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
AglM and VNG1048G, Two Haloarchaeal UDP-Glucose Dehydrogenases, Show Different Salt-Related Behaviors. Life (Basel) 2016; 6:life6030031. [PMID: 27527219 PMCID: PMC5041007 DOI: 10.3390/life6030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022] Open
|
3
|
Singh S, Michalska K, Bigelow L, Endres M, Kharel MK, Babnigg G, Yennamalli RM, Bingman CA, Joachimiak A, Thorson JS, Phillips GN. Structural Characterization of CalS8, a TDP-α-D-Glucose Dehydrogenase Involved in Calicheamicin Aminodideoxypentose Biosynthesis. J Biol Chem 2015; 290:26249-58. [PMID: 26240141 DOI: 10.1074/jbc.m115.673459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.
Collapse
Affiliation(s)
- Shanteri Singh
- From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596
| | - Karolina Michalska
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lance Bigelow
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Michael Endres
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Madan K Kharel
- the School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853
| | - Gyorgy Babnigg
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Ragothaman M Yennamalli
- the Department of BioSciences, Department of Chemistry, Rice University, Houston, Texas 77005
| | - Craig A Bingman
- the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Jon S Thorson
- From the Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596,
| | - George N Phillips
- the Department of BioSciences, Department of Chemistry, Rice University, Houston, Texas 77005 the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| |
Collapse
|