1
|
Fryszkowska A, An C, Alvizo O, Banerjee G, Canada KA, Cao Y, DeMong D, Devine PN, Duan D, Elgart DM, Farasat I, Gauthier DR, Guidry EN, Jia X, Kong J, Kruse N, Lexa KW, Makarov AA, Mann BF, Milczek EM, Mitchell V, Nazor J, Neri C, Orr RK, Orth P, Phillips EM, Riggins JN, Schafer WA, Silverman SM, Strulson CA, Subramanian N, Voladri R, Yang H, Yang J, Yi X, Zhang X, Zhong W. A chemoenzymatic strategy for site-selective functionalization of native peptides and proteins. Science 2022; 376:1321-1327. [PMID: 35709255 DOI: 10.1126/science.abn2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.
Collapse
Affiliation(s)
- Anna Fryszkowska
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Chihui An
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Oscar Alvizo
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Keith A Canada
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yang Cao
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Duane DeMong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Paul N Devine
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Da Duan
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - David M Elgart
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Iman Farasat
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Donald R Gauthier
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erin N Guidry
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Xiujuan Jia
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jongrock Kong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Nikki Kruse
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Katrina W Lexa
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Alexey A Makarov
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Benjamin F Mann
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erika M Milczek
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Vesna Mitchell
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Jovana Nazor
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Claudia Neri
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Robert K Orr
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter Orth
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Eric M Phillips
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - James N Riggins
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Wes A Schafer
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Steven M Silverman
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | | | - Rama Voladri
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Hao Yang
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jie Yang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Xiang Yi
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Xiyun Zhang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Wendy Zhong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
3
|
Chand D, Varshney N, Ramasamy S, Panigrahi P, Brannigan JA, Wilkinson AJ, Suresh CG. Structure mediation in substrate binding and post-translational processing of penicillin acylases: Information from mutant structures of Kluyvera citrophila penicillin G acylase. Protein Sci 2015; 24:1660-70. [PMID: 26243007 DOI: 10.1002/pro.2761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 11/07/2022]
Abstract
Penicillin acylases are industrially important enzymes for the production of 6-APA, which is used extensively in the synthesis of secondary antibiotics. The enzyme translates into an inactive single chain precursor that subsequently gets processed by the removal of a spacer peptide connecting the chains of the mature active heterodimer. We have cloned the penicillin G acylase from Kluyvera citrophila (KcPGA) and prepared two mutants by site-directed mutagenesis. Replacement of N-terminal serine of the β-subunit with cysteine (Serβ1Cys) resulted in a fully processed but inactive enzyme. The second mutant in which this serine is replaced by glycine (Serβ1Gly) remained in the unprocessed and inactive form. The crystals of both mutants belonged to space group P1 with four molecules in the asymmetric unit. The three-dimensional structures of these mutants were refined at resolutions 2.8 and 2.5 Å, respectively. Comparison of these structures with similar structures of Escherichia coli PGA (EcPGA) revealed various conformational changes that lead to autocatalytic processing and consequent removal of the spacer peptide. The large displacements of residues such as Arg168 and Arg477 toward the N-terminal cleavage site of the spacer peptide or the conformational changes of Arg145 and Phe146 near the active site in these structures suggested probable steps in the processing dynamics. A comparison between the structures of the processed Serβ1Cys mutant and that of the processed form of EcPGA showed conformational differences in residues Argα145, Pheα146, and Pheβ24 at the substrate binding pocket. Three conformational transitions of Argα145 and Pheα146 residues were seen when processed and unprocessed forms of KcPGA were compared with the substrate bound structure of EcPGA. Structure mediation in activity difference between KcPGA and EcPGA toward acyl homoserine lactone (AHL) is elucidated.
Collapse
Affiliation(s)
- Deepak Chand
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - NishantKumar Varshney
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Priyabrata Panigrahi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - James A Brannigan
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, Heslington, United Kingdom
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, Heslington, United Kingdom
| | - C G Suresh
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
4
|
Avinash VS, Pundle AV, Ramasamy S, Suresh CG. Penicillin acylases revisited: importance beyond their industrial utility. Crit Rev Biotechnol 2014; 36:303-16. [PMID: 25430891 DOI: 10.3109/07388551.2014.960359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is of great importance to study the physiological roles of enzymes in nature; however, in some cases, it is not easily apparent. Penicillin acylases are pharmaceutically important enzymes that cleave the acyl side chains of penicillins, thus paving the way for production of newer semi-synthetic antibiotics. They are classified according to the type of penicillin (G or V) that they preferentially hydrolyze. Penicillin acylases are also used in the resolution of racemic mixtures and peptide synthesis. However, it is rather unfortunate that the focus on the use of penicillin acylases for industrial applications has stolen the spotlight from the study of the importance of these enzymes in natural metabolism. The penicillin acylases, so far characterized from different organisms, show differences in their structural nature and substrate spectrum. These enzymes are also closely related to the bacterial signalling phenomenon, quorum sensing, as detailed in this review. This review details studies on biochemical and structural characteristics of recently discovered penicillin acylases. We also attempt to organize the available insights into the possible in vivo role of penicillin acylases and related enzymes and emphasize the need to refocus research efforts in this direction.
Collapse
Affiliation(s)
- Vellore Sunder Avinash
- a Division of Biochemical Sciences, CSIR-National , National Chemical Laboratory , Pune , India
| | - Archana Vishnu Pundle
- a Division of Biochemical Sciences, CSIR-National , National Chemical Laboratory , Pune , India
| | - Sureshkumar Ramasamy
- a Division of Biochemical Sciences, CSIR-National , National Chemical Laboratory , Pune , India
| | | |
Collapse
|