1
|
Wang X, Li B, Guo Y, Shen S, Zhao L, Zhang P, Sun Y, Sui SF, Deng F, Lou Z. Molecular basis for the formation of ribonucleoprotein complex of Crimean-Congo hemorrhagic fever virus. J Struct Biol 2016; 196:455-465. [PMID: 27666016 DOI: 10.1016/j.jsb.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 02/05/2023]
Abstract
Negative-sense single-strand RNA (-ssRNA) viruses comprise a large family of pathogens that cause severe human infectious diseases. All -ssRNA viruses encode a nucleocapsid protein (NP) to encapsidate the viral genome, which, together with polymerase, forms a ribonucleoprotein complex (RNP) that is packaged into virions and acts as the template for viral replication and transcription. In our previous work, we solved the monomeric structure of NP encoded by Crimean-Congo hemorrhagic fever virus (CCHFV), which belongs to the Nairovirus genus within the Bunyaviridae family, and revealed its unusual endonuclease activity. However, the mechanism of CCHFV RNP formation remains unclear, due to the difficulty in reconstructing the oligomeric CCHFV NP-RNA complex. Here, we identified and isolated the oligomeric CCHFV NP-RNA complex that formed in expression cells. Sequencing of RNA extracted from the complex revealed sequence specificity and suggested a potential encapsidation signal facilitating the association between NP and viral genome. A cryo-EM reconstruction revealed the ring-shaped architecture of the CCHFV NP-RNA oligomer, thus defining the interaction between the head and stalk domains that results in NP multimerization. This structure also suggested a modified gating mechanism for viral genome encapsidation, in which both the head and stalk domains participate in RNA binding. This work provides insight into the distinct mechanism underlying CCHFV RNP formation compared to other -ssRNA viruses.
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Biomembrane, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Baobin Li
- School of Medicine and MOE Laboratory of Protein Science, Tsinghua University, Beijing 100084, China; School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liang Zhao
- State Key Laboratory of Biomembrane, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peisheng Zhang
- School of Medicine and MOE Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhiyong Lou
- School of Medicine and MOE Laboratory of Protein Science, Tsinghua University, Beijing 100084, China; College of Pharmacy and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:192-201. [PMID: 25638402 DOI: 10.1016/j.jplph.2014.12.014] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 05/18/2023]
Abstract
The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations which exhibit different tissue-specific expression patterns and environmental stress responses. Contrary to most of their counterparts in animal cells, plant GPXs contain cysteine instead of selenocysteine in their active site and while some of them have both glutathione peroxidase and thioredoxin peroxidase functions, the thioredoxin regenerating system is much more efficient in vitro than the glutathione system. At present, the function of these enzymes in plants is not completely understood. The occurrence of thiol-dependent activities of plant GPX isoenzymes suggests that - besides detoxification of H2O2 and organic hydroperoxides - they may be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP(+) balance. GPXs may represent a link existing between the glutathione- and the thioredoxin-based system. The various thiol buffers, including Trx, can affect a number of redox reactions in the cells most probably via modulation of thiol status. It is still required to identify the in vivo reductant for particular GPX isoenzymes and partners that GPXs interact with specifically. Recent evidence suggests that plant GPXs does not only protect cells from stress induced oxidative damage but they can be implicated in plant growth and development. Following a more general introduction, this study summarizes present knowledge on plant GPXs, highlighting the results on gene expression analysis, regulation and signaling of Arabidopsis thaliana GPXs and also suggests some perspectives for future research.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Edit Horváth
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| |
Collapse
|