1
|
Coste F, Mishra A, Chapuis C, Mance L, Pukało Z, Bigot N, Goffinont S, Gaudon V, Garnier N, Talhaoui I, Castaing B, Huet S, Suskiewicz MJ. RING dimerisation drives higher-order organisation of SINA/SIAH E3 ubiquitin ligases. FEBS J 2025. [PMID: 39910688 DOI: 10.1111/febs.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
RING-type E3 ubiquitin ligases promote ubiquitylation by stabilising an active complex between a ubiquitin-loaded E2-conjugating enzyme and a protein substrate. To fulfil this function, the E3 ubiquitin-protein ligase SIAH1 and other SINA/SIAH subfamily RING-type E3 ligases employ an N-terminal catalytic RING domain and a C-terminal substrate-binding domain (SBD), separated by two zinc fingers. Here, we present the first crystal structure of the RING domain of human SIAH1, together with an adjacent zinc finger, revealing a potential RING dimer, which was validated in solution using static light scattering. RING dimerisation contributes to the E3 ligase activity of SIAH1 both in vitro and in cells. Moreover, as the RING domain is the second element, after the SBD, to independently favour homodimerisation within SINA/SIAH E3 ligases, we propose that alternating RING:RING and SBD:SBD interactions organise multiple copies of a SINA/SIAH protein into a higher-order homomultimer. In line with this hypothesis, fluorescently tagged full-length human SIAH1, human SIAH2 and fruit fly SINA show cytoplasmic clusters in human cells, whereas their distribution becomes more diffuse when RING dimerisation is disabled. The wild-type (WT) form of SIAH1, but not its RING dimerisation mutant, colocalises with aggregated synphilin-1A under proteasomal inhibition, suggesting that SIAH1 multimerisation might contribute to its reported preference for aggregated or multimeric substrates.
Collapse
Affiliation(s)
- Franck Coste
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Aanchal Mishra
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Lucija Mance
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Zofia Pukało
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- Pôle Physique, Université d'Orléans, France
| | - Ibtissam Talhaoui
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| | - Sebastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT (Biologie, Santé, Innovation Technologique) - UAR 3480, US_S 018, F35000, Rennes, France
| | - Marcin J Suskiewicz
- Centre de Biophysique Moléculaire (CBM), UPR 4301, CNRS, Orléans, France
- École Doctorale "Santé, Science Biologique & Chimie du Vivant" (ED549), Université d'Orléans, France
| |
Collapse
|
2
|
Liu Z, Hu Q, Cao K, Sun J, Cui L, Ji M, Shan W, Yang W, Zhang G, Tian Z, Shi H, Zhang B, Wang R. Deficiency of SIAH1 promotes the formation of filopodia by increasing the accumulation of FASN in liver cancer. Cell Death Dis 2024; 15:537. [PMID: 39075049 PMCID: PMC11286965 DOI: 10.1038/s41419-024-06929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
It has been shown that the formation of filopodia is a key step in tumor cell metastasis, but there is limited research regarding its mechanism. In this study, we demonstrated that fatty acid synthase (FASN) promoted filopodia formation in liver cancer cells by regulating fascin actin-bundling protein 1 (FSCN1), a marker protein for filopodia. Mechanistically, on the one hand, the accumulation of FASN is caused by the enhanced deubiquitination of FASN mediated by UCHL5 (ubiquitin c-terminal hydrolase L5). In this pathway, low expression of SIAH1 (Seven in absentia homolog 1) can decrease the ubiquitination and degradation of ADRM1 (adhesion regulating molecule 1) thereby increasing its protein level, which will recruit and activate the deubiquitination enzyme UCHL5, leading to FASN undergo deubiquitination and escape from proteasomal degradation. On the other hand, the accumulation of FASN is related to its weakened ubiquitination, where SIAH1 directly acts as a ubiquitin ligase toward FASN, and low expression of SIAH1 reduces the ubiquitination and degradation of FASN. Both the two pathways are involved in the regulation of FASN in liver cancer. Our results reveal a novel mechanism for FASN accumulation due to the low expression of SIAH1 in human liver cancer and suggest an important role of FASN in filopodia formation in liver cancer cells.
Collapse
Affiliation(s)
- Zhiyi Liu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghe Hu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuan Cao
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Sun
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Licheng Cui
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengxuan Ji
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wengang Shan
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weichao Yang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guowei Zhang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zilu Tian
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hengliang Shi
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bin Zhang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Renhao Wang
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Chen L, Liu YP, Tian LF, Li M, Yang S, Wang S, Xu W, Yan XX. Structural Basis of the Interaction between Human Axin2 and SIAH1 in the Wnt/β-Catenin Signaling Pathway. Biomolecules 2023; 13:biom13040647. [PMID: 37189394 DOI: 10.3390/biom13040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The scaffolding protein Axin is an important regulator of the Wnt signaling pathway, and its dysfunction is closely related to carcinogenesis. Axin could affect the assembly and dissociation of the β-catenin destruction complex. It can be regulated by phosphorylation, poly-ADP-ribosylation, and ubiquitination. The E3 ubiquitin ligase SIAH1 participates in the Wnt pathway by targeting various components for degradation. SIAH1 is also implicated in the regulation of Axin2 degradation, but the specific mechanism remains unclear. Here, we verified that the Axin2-GSK3 binding domain (GBD) was sufficient for SIAH1 binding by the GST pull-down assay. Our crystal structure of the Axin2/SIAH1 complex at 2.53 Å resolution reveals that one Axin2 molecule binds to one SIAH1 molecule via its GBD. These interactions critically depend on a highly conserved peptide 361EMTPVEPA368 within the Axin2-GBD, which forms a loop and binds to a deep groove formed by β1, β2, and β3 of SIAH1 by the N-terminal hydrophilic amino acids Arg361 and Thr363 and the C-terminal VxP motif. The novel binding mode indicates a promising drug-binding site for regulating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lianqi Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Fei Tian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingzhou Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Lee B, Kim DG, Lee A, Kim YM, Cui L, Kim S, Choi I. Synthesis and discovery of the first potent proteolysis targeting chimaera (PROTAC) degrader of AIMP2-DX2 as a lung cancer drug. J Enzyme Inhib Med Chem 2023; 38:51-66. [PMID: 36305287 PMCID: PMC9621298 DOI: 10.1080/14756366.2022.2135510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ARS-interacting multifunctional proteins 2 (AIMP2) is known to be a powerful tumour suppressor. However, the target AIMP2-DX2, AIMP2-lacking exon 2, is often detected in many cancer patients and cells. The predominant approach for targeting AIMP-DX2 has been attempted via small molecule mediated inhibition, but due to the lack of satisfactory activity against AIMP2-DX2, new therapeutic strategies are needed to develop a novel drug for AIMP2-DX2. Here, we report the use of the PROTAC strategy that combines small-molecule AIMP2-DX2 inhibitors with selective E3-ligase ligands with optimised linkers. Consequently, candidate compound 45 was found to be a degrader of AIMP2-DX2. Together, these findings demonstrate that our PROTAC technology targeting AIMP2-DX2 would be a potential new strategy for future lung cancer treatment.
Collapse
Affiliation(s)
- BoRa Lee
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Seoul, Korea
| | - Aram Lee
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Young Mi Kim
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Lianji Cui
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Interdisciplinary Biomedical Center, Gangnam Severance Hospital, Yonsei University, Seoul, Korea
| | - Inhee Choi
- Medicinal Chemistry, Institut Pasteur Korea, Gyeonggi-do, Korea
| |
Collapse
|
5
|
Siah1 promotes the proliferation of NSCLC cells through ubiquitinating and stabilizing Notch1. Exp Cell Res 2022; 419:113305. [PMID: 35961388 DOI: 10.1016/j.yexcr.2022.113305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
Abstract
Seven in absentia homolog 1 (Siah1) has been shown plays important roles in the pathogenesis and development of multiple cancers. However, the functions and mechanisms of Siah1 in non-small cell lung cancer (NSCLC) remain unclear. In our study, we found that knock down of Siah1 could inhibit the proliferation of NSCLC cells, while over-expression of Siah1 had the opposite effects. Molecularly, the bioinformatics analysis determined that notch receptor 1 (Notch1) might be the potential target of Siah1. Subsequently, we identified that Siah1 acted as an E3 ligase to promote the ubiquitination and stabilization of Notch1 through the proteasome pathway. Furthermore, the results showed that the Siah1 expression was directly correlated with CTR9 in human NSCLC tissues. Finally, Siah1 could promote Akt phosphorylation through regulating Notch1, thus promoting the proliferation of NSCLC cells. In conclusion, our study demonstrated that Siah1 acts as an oncogene, can ubiquitinate and stabilize Notch1 by proteasome pathway, which promotes Akt phosphorylation and ultimately leads to NSCLC cell proliferation.
Collapse
|
6
|
Fujiwara H, Hongo K, Hori Y, Yoshida N, Makabe K. β-sheet elasticity of peptide self-assembly mimic, PSAM, with a grafted sequence characterized by comprehensive analyses of isomorphous crystals. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Hughes SE, Hemenway E, Guo F, Yi K, Yu Z, Hawley RS. The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females. PLoS Genet 2019; 15:e1008161. [PMID: 31107865 PMCID: PMC6544331 DOI: 10.1371/journal.pgen.1008161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/31/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
During early meiotic prophase, homologous chromosomes are connected along their entire lengths by a proteinaceous tripartite structure known as the synaptonemal complex (SC). Although the components that comprise the SC are predominantly studied in this canonical ribbon-like structure, they can also polymerize into repeated structures known as polycomplexes. We find that in Drosophila oocytes, the ability of SC components to assemble into canonical tripartite SC requires the E3 ubiquitin ligase Seven in absentia (Sina). In sina mutant oocytes, SC components assemble into large rod-like polycomplexes instead of proper SC. Thus, the wild-type Sina protein inhibits the polymerization of SC components, including those of the lateral element, into polycomplexes. These polycomplexes persist into meiotic stages when canonical SC has been disassembled, indicating that Sina also plays a role in controlling SC disassembly. Polycomplexes induced by loss-of-function sina mutations associate with centromeres, sites of double-strand breaks, and cohesins. Perhaps as a consequence of these associations, centromere clustering is defective and crossing over is reduced. These results suggest that while features of the polycomplexes can be recognized as SC by other components of the meiotic nucleus, polycomplexes nonetheless fail to execute core functions of canonical SC.
Collapse
Affiliation(s)
- Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Elizabeth Hemenway
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
8
|
Ji L, Jiang B, Jiang X, Charlat O, Chen A, Mickanin C, Bauer A, Xu W, Yan X, Cong F. The SIAH E3 ubiquitin ligases promote Wnt/β-catenin signaling through mediating Wnt-induced Axin degradation. Genes Dev 2017; 31:904-915. [PMID: 28546513 PMCID: PMC5458757 DOI: 10.1101/gad.300053.117] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 11/25/2022]
Abstract
In this study, Ji et al. identify SIAH1/2 (SIAH) as the E3 ligase mediating Wnt-induced Axin degradation. Their results suggest that Wnt-induced dissociation of the Axin/GSK3 complex allows SIAH to interact with Axin and promote its degradation, which represents an important feed-forward mechanism to achieve sustained Wnt/β-catenin signaling. The Wnt/β-catenin signaling pathway plays essential roles in embryonic development and adult tissue homeostasis. Axin is a concentration-limiting factor responsible for the formation of the β-catenin destruction complex. Wnt signaling itself promotes the degradation of Axin. However, the underlying molecular mechanism and biological relevance of this targeting of Axin have not been elucidated. Here, we identify SIAH1/2 (SIAH) as the E3 ligase mediating Wnt-induced Axin degradation. SIAH proteins promote the ubiquitination and proteasomal degradation of Axin through interacting with a VxP motif in the GSK3-binding domain of Axin, and this function of SIAH is counteracted by GSK3 binding to Axin. Structural analysis reveals that the Axin segment responsible for SIAH binding is also involved in GSK3 binding but adopts distinct conformations in Axin/SIAH and Axin/GSK3 complexes. Knockout of SIAH1 blocks Wnt-induced Axin ubiquitination and attenuates Wnt-induced β-catenin stabilization. Our data suggest that Wnt-induced dissociation of the Axin/GSK3 complex allows SIAH to interact with Axin not associated with GSK3 and promote its degradation and that SIAH-mediated Axin degradation represents an important feed-forward mechanism to achieve sustained Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lei Ji
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Bo Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomo Jiang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Olga Charlat
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Amy Chen
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Craig Mickanin
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Andreas Bauer
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | - Xiaoxue Yan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cong
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Zhang Q, Wang Z, Hou F, Harding R, Huang X, Dong A, Walker JR, Tong Y. The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear. Biochim Biophys Acta Gen Subj 2016; 1861:3095-3105. [PMID: 27776223 DOI: 10.1016/j.bbagen.2016.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. METHODS We used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. RESULTS We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. CONCLUSIONS The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. GENERAL SIGNIFICANCE The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.
Collapse
Affiliation(s)
- Qi Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Zhongduo Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Feng Hou
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rachel Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xinyi Huang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John R Walker
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
10
|
Lin CH, Lin SY, Chang HW, Ko LJ, Tseng YS, Chang VHS, Yu WCY. CDK2 phosphorylation regulates the protein stability of KLF10 by interfering with binding of the E3 ligase SIAH1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1174-81. [PMID: 25728284 DOI: 10.1016/j.bbamcr.2015.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 01/07/2023]
Abstract
Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGF-β1-mediated growth inhibition of human carcinoma cells. It is known that KLF10 mimics the anti-proliferative and apoptotic effects that TGF-β1 has on epithelial cell growth and the growth of various tumor cells; based on these findings it is considered as a tumor suppressor. KLF10 protein expression is tightly associated with cell cycle-dependent events. However, the regulatory mechanism and its biological meaning have not been identified. In this study, we have demonstrated that KLF10 is a substrate of CDK2/cyclin E and can be phosphorylated. We also have shown that KLF10 efficiently binds to CDK2, while binding much less to CDK4, and displaying no binding to Cdk6. Using mass spectrometry, site direct mutagenesis, in vitro kinase assays and depletion assays, we have established that CDK2 phosphorylates Ser206, which subsequently affects the steady state level of KLF10 in cells. Our studies have also proved that CDK2 up-regulates the protein level of KLF10 through reducing its association with SIAH1, a KLF10 E3-ubiqutin ligase involved in proteasomal degradation. Taken all together, these findings indicate that CDK2-dependent phosphorylation regulates KLF10 stability and that this affects the role of KLF10 in cell.
Collapse
Affiliation(s)
- Ching-Hui Lin
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsuen-Wen Chang
- Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
| | - Li-Jung Ko
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Yan-Shen Tseng
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| | - Vincent H S Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Winston C Y Yu
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan; Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|