1
|
Soldatova NS, Radzhabov AD, Ivanov DM, Burguera S, Frontera A, Abramov PA, Postnikov PS, Kukushkin VY. Key-to-lock halogen bond-based tetragonal pyramidal association of iodonium cations with the lacune rims of beta-octamolybdate. Chem Sci 2024; 15:12459-12472. [PMID: 39118643 PMCID: PMC11304769 DOI: 10.1039/d4sc01695e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/16/2024] [Indexed: 08/10/2024] Open
Abstract
The structure-directing "key-to-lock" interaction of double σ-(IIII)-hole donating iodonium cations with the O-flanked pseudo-lacune rims of [β-Mo8O26]4- gives halogen-bonded iodonium-beta-octamolybate supramolecular associates. In the occurrence of their tetragonal pyramidal motifs, deep and broad σ-(IIII)-holes of a cation recognize the molybdate backbone, which provides an electronic pool localized around the two lacunae. The halogen-bonded I⋯O linkages in the structures were thoroughly studied computationally and classified as two-center, three-center bifurcated, and unconventional "orthogonal" I⋯O halogen bonds. In the latter, the O-atom approaches orthogonally the C-IIII-C plane of an iodonium cation and this geometry diverge from the IUPAC criteria for the identification of the halogen bond.
Collapse
Affiliation(s)
- Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
| | - Amirbek D Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
| | - Sergi Burguera
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 Palma de Mallorca (Baleares) 07122 Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5 Palma de Mallorca (Baleares) 07122 Spain
| | - Pavel A Abramov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad. Lavrentiev Av. Novosibirsk 630090 Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634050 Russian Federation
- Department of Solid State Engineering, University of Chemical Technology Prague 16628 Czech Republic
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University Barnaul 656049 Russian Federation
| |
Collapse
|
2
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
3
|
Varadwaj PR. Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist? Int J Mol Sci 2024; 25:4587. [PMID: 38731806 PMCID: PMC11083155 DOI: 10.3390/ijms25094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
4
|
Ramasami P, Murray JS. Anisotropies in electronic densities and electrostatic potentials of Halonium Ions: focus on Chlorine, Bromine and Iodine. J Mol Model 2024; 30:81. [PMID: 38393388 DOI: 10.1007/s00894-024-05869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
CONTEXT Why are the halonium cations so effective in forming strongly-bound complexes? We directed our research to address this question and we present electrostatic potential data for the valence-state halogen atoms X and halonium cations X+, where X = Cl, Br, I. The electron densities and electrostatic potentials of the halonium cations show considerably greater anisotropy than do the valence state halogens. The distances from the electrostatic potential surface maxima to the halogen nuclei are about 0.5 Å smaller than the distances from the electrostatic potential surface minima to the nuclei, giving the halonium cations each a more disk-like shape than the corresponding neutral valence state halogens. Their surface electrostatic potentials are totally consistent with the directionalities of halonium cations in complexes and the strengths of their interactions. To add perspective to this brief report, we have included calculations of the isotropic cation K+ and noble gas Kr. METHODS The calculations of the electrostatic potentials of the valence states of the halogen atoms Cl, Br and I and the halonium cations Cl+, Br+ and I+, as well as K+ and Kr, on 0.001 au contours of their electronic densities were carried out with Gaussian O9 and the Wave Function Analysis - Surface Analysis Suite (WFA-SAS) at the M06-2X/6-31 + G(d,p) and M06-2X/3-21G* levels.
Collapse
Affiliation(s)
- Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
- Centre of Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| |
Collapse
|
5
|
Lanzi M, Wencel-Delord J. Diaryl hypervalent bromines and chlorines: synthesis, structures and reactivities. Chem Sci 2024; 15:1557-1569. [PMID: 38303936 PMCID: PMC10829020 DOI: 10.1039/d3sc05382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024] Open
Abstract
In the field of modern organic chemistry, hypervalent compounds have become indispensable tools for synthetic chemists, finding widespread applications in both academic research and industrial settings. While iodine-based reagents have historically dominated this research field, recent focus has shifted to the potent yet relatively unexplored chemistry of diaryl λ3-bromanes and -chloranes. Despite their unique reactivities, the progress in their development and application within organic synthesis has been hampered by the absence of straightforward, reliable, and widely applicable preparative methods. However, recent investigations have uncovered innovative approaches and novel reactivity patterns associated with these specialized compounds. These discoveries suggest that we have only begun to tap into their potential, implying that there is much more to be explored in this captivating area of chemistry.
Collapse
Affiliation(s)
- Matteo Lanzi
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire etApplications (UMR CNRS 7042), Université deStrasbourg/Université deHaute Alsace, ECPM 67087 Strasbourg France
- Institute of Organic Chemistry, JMU Würzburg Am Hubland Würzburg Germany
| |
Collapse
|
6
|
Huss C, Yoshimura A, Rohde GT, Mironova IA, Postnikov PS, Yusubov MS, Saito A, Zhdankin VV. Preparation and X-ray Structural Study of Dibenzobromolium and Dibenzochlorolium Derivatives. ACS OMEGA 2024; 9:2664-2673. [PMID: 38250385 PMCID: PMC10795028 DOI: 10.1021/acsomega.3c07512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Various five-membered cyclic dibenzobromolium salts (dibenzo[b,d]bromol-5-ium chloride, nitrate, hydrogen sulfate, dihydrogen phosphate, trifluoroacetate, and tetrafluoroborate) were prepared by diazotization-cyclization of 2'-bromo-[1,1'-biphenyl]-2-amine in solution of appropriate acids. The chlorolium analogues (iodide, trifluoroacetate, and tetrafluoroborate) were obtained by a similar procedure. Additional dibenzohalolium derivatives (dibenzo[b,d]bromol-5-ium and dibenzo[b,d]chlorol-5-ium azides, bis(trifluoromethanesulfonyl)imidates, thiocyanates, and trifluoromethanesulfonates) were prepared by anion exchange. Structures of ten of these dibenzohalolium derivatives were established by X-ray analysis. Bond distances and angles for the halogen atoms in different dibenzohalolium derivatives were summarized and discussed.
Collapse
Affiliation(s)
- Christopher
D. Huss
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Akira Yoshimura
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | | | - Irina A. Mironova
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Pavel S. Postnikov
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
- Department
of Solid-State Engineering, University of
Chemistry and Technology, Prague 16628, Czech Republic
| | - Mekhman S. Yusubov
- Research
School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Akio Saito
- Division
of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-23-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
7
|
Radzhabov AD, Ledneva AI, Soldatova NS, Fedorova II, Ivanov DM, Ivanov AA, Yusubov MS, Kukushkin VY, Postnikov PS. Halogen Bond-Involving Self-Assembly of Iodonium Carboxylates: Adding a Dimension to Supramolecular Architecture. Int J Mol Sci 2023; 24:14642. [PMID: 37834088 PMCID: PMC10573078 DOI: 10.3390/ijms241914642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.
Collapse
Affiliation(s)
- Amirbek D. Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Alyona I. Ledneva
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Natalia S. Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Irina I. Fedorova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Department of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Daniil M. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
| | - Alexey A. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russia
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| |
Collapse
|
8
|
Montgomery CA, Murphy GK. Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control. Beilstein J Org Chem 2023; 19:1171-1190. [PMID: 37592937 PMCID: PMC10428621 DOI: 10.3762/bjoc.19.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Halogen bonding is commonly found with iodine-containing molecules, and it arises when Lewis bases interact with iodine's σ-holes. Halogen bonding and σ-holes have been encountered in numerous monovalent and hypervalent iodine-containing compounds, and in 2022 σ-holes were computationally confirmed and quantified in the iodonium ylide subset of hypervalent iodine compounds. In light of this new discovery, this article provides an overview of the reactions of iodonium ylides in which halogen bonding has been invoked. Herein, we summarize key discoveries and mechanistic proposals from the early iodonium ylide literature that invoked halogen bonding-type mechanisms, as well as recent reports of reactions between iodonium ylides and Lewis basic nucleophiles in which halogen bonding has been specifically invoked. The reactions discussed herein are organized to enable the reader to build an understanding of how halogen bonding might impact yield and chemoselectivity outcomes in reactions of iodonium ylides. Areas of focus include nucleophile σ-hole selectivity, and how ylide structural modifications and intramolecular halogen bonding (e.g., the ortho-effect) can improve ylide stability or solubility, and alter reaction outcomes.
Collapse
Affiliation(s)
- Carlee A Montgomery
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
9
|
Semenov AV, Baykov SV, Soldatova NS, Geyl KK, Ivanov DM, Frontera A, Boyarskiy VP, Postnikov PS, Kukushkin VY. Noncovalent Chelation by Halogen Bonding in the Design of Metal-Containing Arrays: Assembly of Double σ-Hole Donating Halolium with Cu I-Containing O,O-Donors. Inorg Chem 2023; 62:6128-6137. [PMID: 37000904 DOI: 10.1021/acs.inorgchem.3c00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Five new copper(I) complexes─composed of the paired dibenzohalolium and [CuL2]- (L = 1,2,4-oxadiazolate) counterions in which O,O-atoms of the anion are simultaneously linked to the halogen atom─were generated and isolated as the solid via the three-component reaction between [Cu(MeCN)4](BF4), sodium 1,2,4-oxadiazolates, and dibenzohalolium triflates (or trifluoroacetates). This reaction is different from the previously reported CuI-catalyzed arylation of 1,2,4-oxadiazolones by diaryliodonium salts. Inspection of the solid-state X-ray structures of the complexes revealed the strong three-center X···O,O (X = Br, I) halogen bonding occurred between the oxadiazolate moieties and dibenzohalolium cation. According to performed theoretical calculations, this noncovalent interaction (or noncovalent chelation) was recognized as the main force in the stabilization of the copper(I) complexes. An explanation for the different behavior of complexes, which provide either chelate or nonchelate binding, is based on the occurrence of additional -CH3···π interactions, which were also quantified.
Collapse
|
10
|
Podrezova EV, Okhina AA, Rogachev AD, Baykov SV, Kirschning A, Yusubov MS, Soldatova NS, Postnikov PS. Ligand-free Ullmann-type arylation of oxazolidinones by diaryliodonium salts. Org Biomol Chem 2023; 21:1952-1957. [PMID: 36757159 DOI: 10.1039/d2ob02122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The arylation of azaheterocycles can be considered as one of the most important processes for the preparation of various biologically active compounds. In the present work, we describe a method for the copper-catalyzed N-arylation of hindered oxazolidinones using diaryliodonium salts. The method succeeds in good to excellent yields for the arylation of 4-alkyloxazolidinones, including sterically hindered isopropyl- and tert-butyl-substituted. The efficiency of the method was demonstrated for a wide range of diaryliodonium salts - symmetric and unsymmetric as well as ortho-substituted derivatives. The developed approach will provide an important contribution in the development and preparation of novel drugs and bioactive molecules containing oxazolidinone moieties.
Collapse
Affiliation(s)
- Ekaterina V Podrezova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Alina A Okhina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia
| | - Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk 630090, Russia.,Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia
| | - Sergey V Baykov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia. .,Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia.
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia. .,Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| |
Collapse
|
11
|
Robidas R, Reinhard DL, Huber SM, Legault CY. A Quantum-chemical Analysis on the Lewis Acidity of Diarylhalonium Ions. Chemphyschem 2023; 24:e202200634. [PMID: 36043491 PMCID: PMC10092059 DOI: 10.1002/cphc.202200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Cyclic diaryliodonium compounds like iodolium derivatives have increasingly found use as noncovalent Lewis acids in the last years. They are more stable toward nucleophilic substitution than acyclic systems and are markedly more Lewis acidic. Herein, this higher Lewis acidity is analyzed and explained via quantum-chemical calculations and energy decomposition analyses. Its key origin is the change in energy levels and hybridization of iodine's orbitals, leading to both more favorable electrostatic interaction and better charge transfer. Both of the latter seem to contribute in similar fashion, while hydrogen bonding as well as steric repulsion with the phenyl rings play at best a minor role. In comparison to iodolium, bromolium and chlorolium are less Lewis acidic the lighter the halogen, which is predominantly based on less favorable charge-transfer interactions.
Collapse
Affiliation(s)
- Raphaël Robidas
- Department of Chemistry, Université de Sherbrooke, Centre in Green Chemistry and Catalysis, J1K 2R1, Sherbrooke, Québec, Canada
| | - Dominik L Reinhard
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Claude Y Legault
- Department of Chemistry, Université de Sherbrooke, Centre in Green Chemistry and Catalysis, J1K 2R1, Sherbrooke, Québec, Canada
| |
Collapse
|
12
|
Yoshida Y, Ao T, Mino T, Sakamoto M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010384. [PMID: 36615579 PMCID: PMC9822295 DOI: 10.3390/molecules28010384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
There has been a great focus on halogen-bonding as a unique interaction between electron-deficient halogen atoms with Lewis basic moieties. Although the application of halogen-bonded atoms in organic chemistry has been eagerly researched in these decades, the development of chiral molecules with halogen-bonding functionalities and their utilization in asymmetric catalysis are still in the\ir infancy. We have previously developed chiral halonium salts with amide functionalities, which behaved as excellent catalysts albeit in only two reactions due to the lack of substrate activation abilities. In this manuscript, we have developed chiral halonium salts with an N-nitrosamine moiety and applied them to the Mannich reaction of isatin-derived ketimines with malonic esters. The study focused on our novel bromonium salt catalyst which provided the corresponding products in high yields with up to 80% ee. DFT calculations of the chiral catalyst structure suggested that the high asymmetric induction abilities of this catalyst are due to the Lewis basic role of the N-nitrosamine part. To the best of our knowledge, this is the first catalytic application of N-nitrosamines.
Collapse
|
13
|
Ma Y, Guo B, Ge JY, Chen L, Lv N, Wu X, Chen J, Chen Z. Rational Design of a Near-Infrared Ratiometric Probe with a Large Stokes Shift: Visualization of Polarity Abnormalities in Non-Alcoholic Fatty Liver Model Mice. Anal Chem 2022; 94:12383-12390. [PMID: 36049122 DOI: 10.1021/acs.analchem.2c01972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tracking liver polarity with noninvasive and dynamic imaging techniques is helpful to better understand the non-alcoholic fatty liver (NAFL). Herein, a novel near-infrared (NIR) fluorescent probe Cy-Mp is constructed using a "symmetry collapse" strategy. The structure modification leads to the conversion of locally excited state fluorescence to charge transfer state fluorescence. Cy-Mp emits at near-infrared (NIR) wavelengths with high photostability as well as a large Stokes shift. Cy-Mp exhibits a ratiometric response to polarity, providing more accurate analysis of intracellular polarity via the built-in internal reference correction. Most importantly, the in vivo studies indicate that Cy-Mp can accumulate in the liver and the decreased polarity in the liver of mice with NAFL is verified by the ratiometric imaging, implying the great potential of Cy-Mp in the diagnosis of NAFL.
Collapse
Affiliation(s)
- Yaogeng Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Bingjie Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Lepeng Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Ningning Lv
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xuan Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhongyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
14
|
Synthesis and structural characterization of nitro-functionalized cyclic hypervalent iodine compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Calabrese M, Pizzi A, Daolio A, Frontera A, Resnati G. Periodate anions as a halogen bond donor: formation of anion⋯anion dimers and other adducts. Chem Commun (Camb) 2022; 58:9274-9277. [PMID: 35904031 DOI: 10.1039/d2cc03191d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Single crystal X-ray analyses show that iodine in pyridinium periodates acts as a halogen bond (HaB) donor forming short and almost linear contacts with neutral and anionic electron donors. A combination of QTAIM and NCIplot computational tools proves the attractive nature of these contacts.
Collapse
Affiliation(s)
- Miriam Calabrese
- NFMLab, Department Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Andrea Pizzi
- NFMLab, Department Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Andrea Daolio
- NFMLab, Department Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Antonio Frontera
- Department Chemistry, Universitat de les Illes Balears, Crta, de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Giuseppe Resnati
- NFMLab, Department Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| |
Collapse
|
16
|
DFT study of common anions adsorption at graphene surface due to anion-π interaction. J Mol Model 2022; 28:225. [PMID: 35857141 DOI: 10.1007/s00894-022-05218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 12/07/2022]
Abstract
Using density functional theory (DFT) calculations, we researched the different anions adsorption on the graphene and found that anions can be stably adsorbed on the graphene surface due to the anion-π interaction. The adsorption energy decreased as the order of HPO42- > SO42- > F- > CH3COO- > ClO3- > NO3- > ClO4- > SCN- > Cl- > Br-. The adsorption energy markedly increased as the valence of anion increased from negative monovalence (< -20 kcal/mol) to negative bivalence (> -40 kcal/mol). The energy decomposition analysis (EDA) showed that anion-π interaction is mainly induced by orbital effect. This work provides new insights for understanding Hofmeister effect at graphene interface from the molecular level and indicates that the anion-π interaction cannot be ignored at the interface, especially for the substrate with π-electron-rich carbon-based nanomaterials.
Collapse
|
17
|
Karandikar SS, Bhattacharjee A, Metze BE, Javaly N, Valente EJ, McCormick TM, Stuart DR. Orbital analysis of bonding in diarylhalonium salts and relevance to periodic trends in structure and reactivity. Chem Sci 2022; 13:6532-6540. [PMID: 35756513 PMCID: PMC9172531 DOI: 10.1039/d2sc02332f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Diarylhalonium compounds provide new opportunities as reagents and catalysts in the field of organic synthesis. The three center, four electron (3c-4e) bond is a center piece of their reactivity, but structural variation among the diarylhaloniums, and in comparison with other λ3-iodanes, indicates that the model needs refinement for broader applicability. We use a combination of Density Functional Theory (DFT), Natural Bond Orbital (NBO) Theory, and X-ray structure data to correlate bonding and structure for a λ3-iodane and a series of diarylchloronium, bromonium, and iodonium salts, and their isoelectronic diarylchalcogen counterparts. This analysis reveals that the s-orbital on the central halogen atom plays a greater role in the 3c-4e bond than previously considered. Finally, we show that our revised bonding model and associated structures account for both kinetic and thermodynamic reactivity for both acyclic phenyl(mesityl)halonium and cyclic dibenzohalolium salts.
Collapse
Affiliation(s)
| | - Avik Bhattacharjee
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Bryan E Metze
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Nicole Javaly
- Department of Chemistry, Portland State University Portland OR 97201 USA
| | - Edward J Valente
- Department of Chemistry, University of Portland Portland OR 97203 USA
| | | | - David R Stuart
- Department of Chemistry, Portland State University Portland OR 97201 USA
| |
Collapse
|
18
|
Soldatova NS, Postnikov PS, Ivanov DM, Semyonov OV, Kukurina OS, Guselnikova O, Yamauchi Y, Wirth T, Zhdankin VV, Yusubov MS, Gomila RM, Frontera A, Resnati G, Kukushkin VY. Zwitterionic iodonium species afford halogen bond-based porous organic frameworks. Chem Sci 2022; 13:5650-5658. [PMID: 35694330 PMCID: PMC9116302 DOI: 10.1039/d2sc00892k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability.
Collapse
Affiliation(s)
- Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Department of Solid State Engineering, Institute of Chemical Technology Prague 16628 Czech Republic
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Institute of Chemistry, Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Oleg V Semyonov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Olga S Kukurina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Wirth
- School of Chemistry, Cardiff University Park Place Cardiff UK
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth MN 55812 USA
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Rosa M Gomila
- Serveis Científico-Tècnics, Universitat de les Illes Balears Crta. de Valldemossa Km 7.5 07122 Palma de Mallorca Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears Crta. de Valldemossa Km 7.5 07122 Palma de Mallorca Spain
| | - Giuseppe Resnati
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University Tomsk 634034 Russian Federation
- NFMLab, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta"; Politecnico di Milano via Mancinelli 7 I-20131 Milano Italy
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| |
Collapse
|
19
|
Kikushima K, Miyamoto N, Watanabe K, Koseki D, Kita Y, Dohi T. Ligand- and Counterion-Assisted Phenol O-Arylation with TMP-Iodonium(III) Acetates. Org Lett 2022; 24:1924-1928. [DOI: 10.1021/acs.orglett.2c00294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Kazuma Watanabe
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Daichi Koseki
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
20
|
Fizer M, Fizer O, Barbalat D, Shishkina S, Snigur D. Structural peculiarities of new benzopyrylium dyes: X-ray, FT-IR, and DFT complex study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Il'in MV, Sysoeva AA, Novikov AS, Bolotin DS. Diaryliodoniums as Hybrid Hydrogen- and Halogen-Bond-Donating Organocatalysts for the Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:4569-4579. [PMID: 35176856 DOI: 10.1021/acs.joc.1c02885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dibenziodolium and diphenyliodonium triflates display high catalytic activity for the multicomponent reaction that leads to a series of imidazopyridines. Density functional theory (DFT) calculations indicate that both the salts can play the role of hybrid hydrogen- and halogen-bond-donating organocatalysts, which electrophilically activate the carbonyl and imine groups during the reaction process. The ortho-H atoms in the vicinal position to the I atom play a dual role: forming additional noncovalent bonds with the ligated substrate and increasing the maximum electrostatic potential on the σ-hole at the iodine atom owing to the effects of polarization. Dibenziodolium triflate exhibits higher catalytic activity, and the results obtained from 1H nuclear magnetic resonance (NMR) titrations, in conjunction with those from DFT calculations, indicate that this could be explained in terms of the additional energy required for the rotation of the phenyl ring in the diphenyliodonium cation during ligation of the substrate.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
22
|
Yoshida Y, Fujimura T, Mino T, Sakamoto M. Chiral Binaphthyl‐based Iodonium Salt (Hypervalent Iodine(III)) as Hydrogen‐ and Halogen‐bonding Bifunctional Catalyst: Insight into Abnormal Counteranion Effect and Asymmetric Synthesis of N, S‐Acetals. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Boelke A, Kuczmera TJ, Lork E, Nachtsheim BJ. N-Heterocyclic Iod(az)olium Salts - Potent Halogen-Bond Donors in Organocatalysis. Chemistry 2021; 27:13128-13134. [PMID: 34160859 PMCID: PMC8519039 DOI: 10.1002/chem.202101961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 01/03/2023]
Abstract
This article describes the application of N-heterocyclic iod(az)olium salts (NHISs) as highly reactive organocatalysts. A variety of mono- and dicationic NHISs are described and utilized as potent XB-donors in halogen-bond catalysis. They were benchmarked in seven diverse test reactions in which the activation of carbon- and metal-chloride bonds as well as carbonyl and nitro groups was achieved. N-methylated dicationic NHISs rendered the highest reactivity in all investigated catalytic applications with reactivities even higher than all previously described monodentate XB-donors based on iodine(I) and (III) and the strong Lewis acid BF3 .
Collapse
Affiliation(s)
- Andreas Boelke
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Thomas J. Kuczmera
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Enno Lork
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Boris J. Nachtsheim
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| |
Collapse
|
24
|
Sysoeva AA, Novikov AS, Il'in MV, Suslonov VV, Bolotin DS. Predicting the catalytic activity of azolium-based halogen bond donors: an experimentally-verified theoretical study. Org Biomol Chem 2021; 19:7611-7620. [PMID: 34323914 DOI: 10.1039/d1ob01158h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This report demonstrates the successful application of electrostatic surface potential distribution analysis for evaluating the relative catalytic activity of a series of azolium-based halogen bond donors. A strong correlation (R2 > 0.97) was observed between the positive electrostatic potential of the σ-hole on the halogen atom and the Gibbs free energy of activation of the model reactions (i.e., halogen abstraction and carbonyl activation). The predictive ability of the applied approach was confirmed experimentally. It was also determined that the catalytic activity of azolium-based halogen bond donors was generally governed by the structure of the azolium cycle, whereas the substituents on the heterocycle had a limited impact on the activity. Ultimately, this study highlighted four of the most promising azolium halogen bond donors, which are expected to exhibit high catalytic activity.
Collapse
Affiliation(s)
- Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Vitalii V Suslonov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
25
|
Classification of So-Called Non-Covalent Interactions Based on VSEPR Model. Molecules 2021; 26:molecules26164939. [PMID: 34443526 PMCID: PMC8399763 DOI: 10.3390/molecules26164939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
The variety of interactions have been analyzed in numerous studies. They are often compared with the hydrogen bond that is crucial in numerous chemical and biological processes. One can mention such interactions as the halogen bond, pnicogen bond, and others that may be classified as σ-hole bonds. However, not only σ-holes may act as Lewis acid centers. Numerous species are characterized by the occurrence of π-holes, which also may play a role of the electron acceptor. The situation is complicated since numerous interactions, such as the pnicogen bond or the chalcogen bond, for example, may be classified as a σ-hole bond or π-hole bond; it ultimately depends on the configuration at the Lewis acid centre. The disadvantage of classifications of interactions is also connected with their names, derived from the names of groups such as halogen and tetrel bonds or from single elements such as hydrogen and carbon bonds. The chaos is aggravated by the properties of elements. For example, a hydrogen atom can act as the Lewis acid or as the Lewis base site if it is positively or negatively charged, respectively. Hence names of the corresponding interactions occur in literature, namely hydrogen bonds and hydride bonds. There are other numerous disadvantages connected with classifications and names of interactions; these are discussed in this study. Several studies show that the majority of interactions are ruled by the same mechanisms related to the electron charge shifts, and that the occurrence of numerous interactions leads to specific changes in geometries of interacting species. These changes follow the rules of the valence-shell electron-pair repulsion model (VSEPR). That is why the simple classification of interactions based on VSEPR is proposed here. This classification is still open since numerous processes and interactions not discussed in this study may be included within it.
Collapse
|
26
|
Robidas R, Reinhard DL, Legault CY, Huber SM. Iodine(III)-Based Halogen Bond Donors: Properties and Applications. CHEM REC 2021; 21:1912-1927. [PMID: 34145711 DOI: 10.1002/tcr.202100119] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Halogen bonding, the non-covalent interaction of Lewis bases with an electron-deficient region of halogen substituents, received increased attention recently. Consequently, the design and evaluation of numerous halogen-containing species as halogen bond donors have been subject to intense research. More recently, organoiodine compounds at the iodine(III) state have been receiving growing attention in the field. Due to their electronic and structural properties, they provide access to unique binding modes. For this reason, our groups have been involved in the development of such compounds, in the quantification of their halogen bonding strength (through the evaluation of their Lewis acidities), as well as in the evaluation of their activities as catalysts in several model reactions. This account will describe these contributions.
Collapse
Affiliation(s)
- Raphaël Robidas
- Department of Chemistry, Université de Sherbrooke, J1K 2R1, Sherbrooke, Québec, Canada
| | - Dominik L Reinhard
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Claude Y Legault
- Department of Chemistry, Université de Sherbrooke, J1K 2R1, Sherbrooke, Québec, Canada
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
27
|
Fizer M, Fizer O. Theoretical study on charge distribution in cetylpyridinium cationic surfactant. J Mol Model 2021; 27:203. [PMID: 34132886 DOI: 10.1007/s00894-021-04820-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023]
Abstract
Here, we report the electrostatic potential maxima and partial atomic charges evaluated on cetylpyridinium cation. The Hartree-Fock method and six DFT functionals (namely, PBE, TPSS, B3LYP, PBE0, M06, and wB97) were used to calculate partial atomic charges via CHELPG, Mulliken, Löwdin, Hirshfeld, and natural population schemes. Calculations were performed for the gas phase and for the CPCM water solvated cation, resulting in a set of 70 types of partial atomic charges. The main tendencies in charge deviations were discussed. In comparison with the electrostatic potential-based CHELPG partial charges, Hirshfeld, Mulliken, Löwdin, and NPA partitioning schema lead to an almost steady decrease in the partial charges in the cetyl chain. This agreed closely with the redistribution of electrostatic potential mapped onto the 0.002 e/Bohr3 isodensity surface.
Collapse
Affiliation(s)
- Maksym Fizer
- Department of Organic Chemistry, Faculty of Chemistry, Uzhhorod National University, Fedinets', Str. 53/1, Uzhhorod, 88000, Ukraine.
| | - Oksana Fizer
- Department of Organic Chemistry, Faculty of Chemistry, Uzhhorod National University, Fedinets', Str. 53/1, Uzhhorod, 88000, Ukraine
| |
Collapse
|
28
|
Miyamoto K, Saito M, Tsuji S, Takagi T, Shiro M, Uchiyama M, Ochiai M. Benchtop-Stable Hypervalent Bromine(III) Compounds: Versatile Strategy and Platform for Air- and Moisture-Stable λ 3-Bromanes. J Am Chem Soc 2021; 143:9327-9331. [PMID: 34125513 DOI: 10.1021/jacs.1c04536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present the first synthesis of air/moisture-stable λ3-bromanes (9 and 10) by using a cyclic 1,2-benzbromoxol-3-one (BBX) strategy. X-ray crystallography and NMR and IR spectroscopy of N-triflylimino-λ3-bromane (12) revealed that the bromine(III) center is effectively stabilized by intramolecular R-Br-O hypervalent bonding. This strategy enables the synthesis of a variety of air-, moisture-, and benchtop-stable Br-hydroxy, -acetoxy, -alkynyl, -aryl, and bis[(trifluoromethyl)sulfonyl]methylide λ3-bromane derivatives.
Collapse
Affiliation(s)
- Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Motomichi Saito
- Graduate School of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Shunsuke Tsuji
- Graduate School of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Taisei Takagi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motoo Shiro
- Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-8666, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda, 386-8567, Japan
| | - Masahito Ochiai
- Graduate School of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan
| |
Collapse
|
29
|
Neufeld J, Stünkel T, Mück‐Lichtenfeld C, Daniliuc CG, Gilmour R. Synthese von trifluorierten Tetralinen durch I(I)/I(III)‐katalysierte Ringexpansion: programmieren von Konformationen über [CH
2
CH
2
] → [CF
2
CHF] Isosterismus. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jessica Neufeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Timo Stünkel
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
30
|
Neufeld J, Stünkel T, Mück‐Lichtenfeld C, Daniliuc CG, Gilmour R. Trifluorinated Tetralins via I(I)/I(III)-Catalysed Ring Expansion: Programming Conformation by [CH 2 CH 2 ] → [CF 2 CHF] Isosterism. Angew Chem Int Ed Engl 2021; 60:13647-13651. [PMID: 33721384 PMCID: PMC8251640 DOI: 10.1002/anie.202102222] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Saturated, fluorinated carbocycles are emerging as important modules for contemporary drug discovery. To expand the current portfolio, the synthesis of novel trifluorinated tetralins has been achieved. Fluorinated methyleneindanes serve as convenient precursors and undergo efficient difluorinative ring expansion with in situ generated p-TolIF2 (>20 examples, up to >95 %). A range of diverse substituents are tolerated under standard catalysis conditions and this is interrogated by Hammett analysis. X-ray analysis indicates a preference for the CH-F bond to occupy a pseudo-axial orientation, consistent with stabilising σC-H →σC-F * interactions. The replacement of the symmetric [CH2 -CH2 ] motif by [CF2 -CHF] removes the conformational degeneracy intrinsic to the parent tetralin scaffold leading to a predictable half-chair. The conformational behavior of this novel structural balance has been investigated by computational analysis and is consistent with stereoelectronic theory.
Collapse
Affiliation(s)
- Jessica Neufeld
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Timo Stünkel
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
31
|
Nishida Y, Suzuki T, Takagi Y, Amma E, Tajima R, Kuwano S, Arai T. A Hypervalent Cyclic Dibenzoiodolium Salt as a Halogen-Bond-Donor Catalyst for the [4+2] Cycloaddition of 2-Alkenylindoles. Chempluschem 2021; 86:741-744. [PMID: 33942571 DOI: 10.1002/cplu.202100089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Indexed: 12/11/2022]
Abstract
A stable, hypervalent cyclic dibenzoiodolium salt acted as a strong halogen bonding (XB)-donor catalyst for [4+2] cycloaddition of 2-alkenylindoles, and not as an oxidizing agent. The cross-[4+2] cycloaddition of 2-vinylindoles with 2-alkenylindoles was catalyzed smoothly by the hypervalent cyclic dibenzoiodolium triflate catalyst to give the tetrahydrocarbazoles in up to 99 % yield with 17 : 1 diastereoselectivity. The hypervalent cyclic dibenzoiodolium salt was also applicable to the Povarov reaction of 2-vinylindole with N-p-methoxyphenyl (PMP) imine to give the indolyl-tetrahydroquinoline in 83 % yield.
Collapse
Affiliation(s)
- Yuki Nishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Takumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Yuri Takagi
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Emi Amma
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Ryoya Tajima
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| |
Collapse
|
32
|
Anion-Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules 2021; 26:molecules26082116. [PMID: 33917030 PMCID: PMC8067769 DOI: 10.3390/molecules26082116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ab initio calculations are applied to the question as to whether a AeX5- anion (Ae = Kr, Xe) can engage in a stable complex with another anion: F-, Cl-, or CN-. The latter approaches the central Ae atom from above the molecular plane, along its C5 axis. While the electrostatic repulsion between the two anions prevents their association in the gas phase, immersion of the system in a polar medium allows dimerization to proceed. The aerogen bond is a weak one, with binding energies less than 2 kcal/mol, even in highly polar aqueous solvent. The complexes are metastable in the less polar solvents THF and DMF, with dissociation opposed by a small energy barrier.
Collapse
|
33
|
Heinen F, Reinhard DL, Engelage E, Huber SM. A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst*. Angew Chem Int Ed Engl 2021; 60:5069-5073. [PMID: 33215804 PMCID: PMC7986438 DOI: 10.1002/anie.202013172] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Indexed: 12/12/2022]
Abstract
In contrast to iodine(I)-based halogen bond donors, iodine(III)-derived ones have only been used as Lewis acidic organocatalysts in a handful of examples, and in all cases they acted in a monodentate fashion. Herein, we report the first application of a bidentate bis(iodolium) salt as organocatalyst in a Michael and a nitro-Michael addition reaction as well as in a Diels-Alder reaction that had not been activated by noncovalent organocatalysts before. In all cases, the performance of this bidentate XB donor distinctly surpassed the one of arguably the currently strongest iodine(I)-based organocatalyst. Bidentate coordination to the substrate was corroborated by a structural analysis and by DFT calculations of the transition states. Overall, the catalytic activity of the bis(iodolium) system approaches that of strong Lewis acids like BF3 .
Collapse
Affiliation(s)
- Flemming Heinen
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Dominik L. Reinhard
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Elric Engelage
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| |
Collapse
|
34
|
Reinhard DL, Heinen F, Stoesser J, Engelage E, Huber SM. Tuning the Halogen Bonding Strength of Cyclic Diaryliodonium Salts. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dominik L. Reinhard
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 DE 44801 Bochum Germany
| | - Flemming Heinen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 DE 44801 Bochum Germany
| | - Julian Stoesser
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 DE 44801 Bochum Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 DE 44801 Bochum Germany
| | - Stefan M. Huber
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 DE 44801 Bochum Germany
| |
Collapse
|
35
|
Heinen F, Reinhard DL, Engelage E, Huber SM. Ein zweizähniger Iod(III)‐basierter Halogenbrückendonor als leistungsfähiger Organokatalysator**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Flemming Heinen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Dominik L. Reinhard
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Elric Engelage
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Stefan M. Huber
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
36
|
Yoshida Y, Ishikawa S, Mino T, Sakamoto M. Bromonium salts: diaryl-λ3-bromanes as halogen-bonding organocatalysts. Chem Commun (Camb) 2021; 57:2519-2522. [DOI: 10.1039/d0cc07733j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bromonium salts have been typically but infrequently used as good leaving groups owing to their high nucleofugality. Herein, we report the synthesis of stable bromonium salts and their first catalytic application, with excellent product yield.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Seitaro Ishikawa
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Takashi Mino
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Masami Sakamoto
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| |
Collapse
|
37
|
Prokudina YV, Davydova EI, Virovets A, Stöger B, Peresypkina E, Pomogaeva AV, Timoshkin AY. Structures and Chemical Bonding in Antimony(III) Bromide Complexes with Pyridine. Chemistry 2020; 26:16338-16348. [PMID: 32672367 DOI: 10.1002/chem.202002261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Indexed: 12/21/2022]
Abstract
Weakly or "partially" bonded molecules are an important link between the chemical and van der Waals interactions. Molecular structures of six new SbBr3 -Py complexes in the solid state have been determined by single-crystal X-ray diffraction analysis. In all complexes all Sb atoms adopt a pseudo-octahedral coordination geometry which is completed by additional Sb⋅⋅⋅Br contacts shorter than the sum of the van der Waals radii, with Br-Sb⋅⋅⋅Br angles close to 180°. To reveal the nature of Sb-Br and Sb-N interactions, the DFT calculations were performed followed by the analysis of the electrostatic potentials, the orbital interactions and the topological analysis. Based on Natural Bond Orbital (NBO) analysis, the Sb-Br interactions range from the covalent bonds to the pnictogen bonds. A simple structural parameter, non-covalence criterion (NCC) is defined as a ratio of the atom-atom distance to the linear combination of sums of covalent and van der Waals radii. NCC correlates with E(2) values for Sb-N, Sb-Cl and Sb-Br bonds, and appears to be useful criterion for a preliminary evaluation of the bonding situation.
Collapse
Affiliation(s)
- Yana V Prokudina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Elena I Davydova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Alexander Virovets
- University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Berthold Stöger
- X-Ray Center, TU Wien, Getreidemarkt, 9, 1060, Vienna, Austria
| | | | - Anna V Pomogaeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| |
Collapse
|
38
|
|
39
|
Haraguchi R, Nishikawa T, Kanazawa A, Aoshima S. Metal-Free Living Cationic Polymerization Using Diaryliodonium Salts as Organic Lewis Acid Catalysts. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00823] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui Haraguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tsuyoshi Nishikawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
40
|
Heinen F, Engelage E, Cramer CJ, Huber SM. Hypervalent Iodine(III) Compounds as Biaxial Halogen Bond Donors. J Am Chem Soc 2020; 142:8633-8640. [PMID: 32286829 PMCID: PMC7252947 DOI: 10.1021/jacs.9b13309] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
“Hypervalent”
iodine(III) derivatives have been established as powerful reagents
in organic transformations, but so far only a handful of studies have
addressed their potential use as halogen-bonding noncovalent Lewis
acids. In contrast to “classical” halogen-bond donors
based on iodine(I) compounds, iodine(III) salts feature two directional
electrophilic axes perpendicular to each other. Herein we present
the first systematic investigation on biaxial binding to such Lewis
acids in solution. To this end, hindered and unhindered iodolium species
were titrated with various substrates, including diesters and diamides,
via 1H NMR spectroscopy and isothermal titration calorimetry.
Clear evidence for biaxial binding was obtained in two model systems,
and the association strengths increased by 2 orders of magnitude.
These findings were corroborated by density functional theory calculations
(which reproduced the trend well but underestimated the absolute binding
constants) and a cocrystal featuring biaxial coordination of a diamide
to the unhindered iodolium compound.
Collapse
Affiliation(s)
- Flemming Heinen
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150,44801 Bochum, Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150,44801 Bochum, Germany
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis 55455-0431, Minnesota, United States
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150,44801 Bochum, Germany
| |
Collapse
|
41
|
Halogen Bonding Provides Heterooctameric Supramolecular Aggregation of Diaryliodonium Thiocyanate. CRYSTALS 2020. [DOI: 10.3390/cryst10030230] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The crystal structure of the newly synthesized 4-methoxyphenyl(phenyl)iodonium thiocyanate, [PhI(4-C6H4OMe)](SCN), represents the first example of 16-membered cyclic heterooctamer formed by halogen bonding between the iodonium cation and SCN−. Results of density functional theory (DFT) calculations followed by the topological analysis of the electron density distribution within the framework of the quantum theory of atoms in molecules (QTAIM) method at the ωB97XD/DZP-DKH level of theory reveal that energies of attractive intermolecular noncovalent interactions I···S and I···N (responsible for the formation of heterooctameric supramolecular clusters {PhI(4-C6H4OMe)}4·{SCN}4 in the solid state structure of [PhI(4-C6H4OMe)](SCN)) vary from 0.9 to 8.5 kcal/mol.
Collapse
|
42
|
Galmés B, Juan‐Bals A, Frontera A, Resnati G. Charge‐Assisted Chalcogen Bonds: CSD and DFT Analyses and Biological Implication in Glucosidase Inhibitors. Chemistry 2020; 26:4599-4606. [DOI: 10.1002/chem.201905498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/06/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Bartomeu Galmés
- Department of ChemistryUniversitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Aida Juan‐Bals
- Department of ChemistryUniversitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Antonio Frontera
- Department of ChemistryUniversitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma de Mallorca Spain
| | - Giuseppe Resnati
- Laboratory of Nanostructured Fluorinated Materials (NFMLab)Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di Milano Via L. Mancinelli 7 20131 Milano Italy
| |
Collapse
|
43
|
Theoretical Description of R-X⋯NH 3 Halogen Bond Complexes: Effect of the R Group on the Complex Stability and Sigma-Hole Electron Depletion. Molecules 2020; 25:molecules25030530. [PMID: 31991810 PMCID: PMC7037998 DOI: 10.3390/molecules25030530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
In the present work, a number of R–X⋯NH3 (X = Cl, Br, and I) halogen bonded systems were theoretical studied by means of DFT calculations performed at the ωB97XD/6-31+G(d,p) level of theory in order to get insights on the effect of the electron-donating or electron-withdrawing character of the different R substituent groups (R = halogen, methyl, partially fluorinated methyl, perfluoro-methyl, ethyl, vinyl, and acetyl) on the stability of the halogen bond. The results indicate that the relative stability of the halogen bond follows the Cl < Br < I trend considering the same R substituent whereas the more electron-withdrawing character of the R substituent the more stable the halogen bond. Refinement of the latter results, performed at the MP2/6-31+G(d,p) level showed that the DFT and the MP2 binding energies correlate remarkably well, suggesting that the Grimme’s type dispersion-corrected functional produces reasonable structural and energetic features of halogen bond systems. DFT results were also observed to agree with more refined calculations performed at the CCSD(T) level. In a further stage, a more thorough analysis of the R–Br⋯NH3 complexes was performed by means of a novel electron localization/delocalization tool, defined in terms of an Information Theory, IT, based quantity obtained from the conditional pair density. For the latter, our in-house developed C++/CUDA program, called KLD (acronym of Kullback–Leibler divergence), was employed. KLD results mapped onto the one-electron density plotted at a 0.04 a.u. isovalue, showed that (i) as expected, the localized electron depletion of the Br sigma-hole is largely affected by the electron-withdrawing character of the R substituent group and (ii) the R–X bond is significantly polarized due to the presence of the NH3 molecule in the complexes. The afore-mentioned constitutes a clear indication of the dominant character of electrostatics on the stabilization of halogen bonds in agreement with a number of studies reported in the main literature. Finally, the cooperative effects on the [Br—CN]n system (n = 1–8) was evaluated at the MP2/6-31+G(d,p) level, where it was observed that an increase of about ~14.2% on the complex stability is obtained when going from n = 2 to n = 8. The latter results were corroborated by the analysis of the changes on the Fermi-hole localization pattern on the halogen bond zones, which suggests an also important contribution of the electron correlation in the stabilization of these systems.
Collapse
|
44
|
Soldatova NS, Postnikov PS, Suslonov VV, Kissler TY, Ivanov DM, Yusubov MS, Galmés B, Frontera A, Kukushkin VY. Diaryliodonium as a double σ-hole donor: the dichotomy of thiocyanate halogen bonding provides divergent solid state arylation by diaryliodonium cations. Org Chem Front 2020. [DOI: 10.1039/d0qo00678e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The reactivity of [Ar1Ar2I](SCN) toward the solid-state arylation depends on the preorganization of halogen bond (XB)-bound SCN−: N-XB-bound thiocyanates, which, in contrast to N,S-XB-bound, undergoes the extremely rare N-arylation of SCN−.
Collapse
Affiliation(s)
- Natalia S. Soldatova
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg 199034
- Russian Federation
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences
- Tomsk Polytechnic University
- Tomsk 634034
- Russian Federation
- Department of Solid State Engineering
| | - Vitalii V. Suslonov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg 199034
- Russian Federation
| | - Troyana Yu. Kissler
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg 199034
- Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg 199034
- Russian Federation
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences
- Tomsk Polytechnic University
- Tomsk 634034
- Russian Federation
| | - Bartomeu Galmés
- Department of Chemistry
- Universitat de les Illes Balear
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balear
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg 199034
- Russian Federation
- South Ural State University
| |
Collapse
|
45
|
Smith JA, Singh-Wilmot MA, Carter KP, Cahill CL, Ridenour JA. Supramolecular assembly of lanthanide-2,3,5,6-tetrafluoroterephthalic acid coordination polymers via fluorine⋯fluorine interactions: a platform for luminescent detection of Fe3+ and nitroaromatic compounds. NEW J CHEM 2020. [DOI: 10.1039/d0nj02604b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
F⋯F interactions stabilize {[Ln(TFTA)1.5(H2O)2]·H2O}n 2D coordination polymers which selectively detect Fe3+ and p-nitrophenols.
Collapse
Affiliation(s)
- Jermaine A. Smith
- Department of Chemistry
- Faculty of Science and Technology
- The University of the West Indies
- Mona
- Jamaica
| | - Marvadeen A. Singh-Wilmot
- Department of Chemistry
- Faculty of Science and Technology
- The University of the West Indies
- Mona
- Jamaica
| | - Korey P. Carter
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | | | | |
Collapse
|
46
|
Gomila RM, Frontera A. Charge assisted halogen and pnictogen bonds: insights from the Cambridge Structural Database and DFT calculations. CrystEngComm 2020. [DOI: 10.1039/d0ce00220h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This manuscript combines a search in the Cambridge Structural Database and DFT calculations to analyse the existence and importance of charge assisted pnictogen and halogen bonds in halophosphonium salts.
Collapse
Affiliation(s)
- Rosa M. Gomila
- Serveis Cientificotècnics
- University of Balearic Islands
- Palma
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
47
|
Kryukova MA, Ivanov DM, Kinzhalov MA, Novikov AS, Smirnov AS, Bokach NA, Yu Kukushkin V. Four-Center Nodes: Supramolecular Synthons Based on Cyclic Halogen Bonding. Chemistry 2019; 25:13671-13675. [PMID: 31232494 DOI: 10.1002/chem.201902264] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Indexed: 12/30/2022]
Abstract
The isocyanide trans-[PdBr2 (CNC6 H4 -4-X')2 ] (X'=Br, I) and nitrile trans-[PtX2 (NCC6 H4 -4-X')2 ] (X/X'=Cl/Cl, Cl/Br, Br/Cl, Br/Br) complexes exhibit similar structural motif in the solid state, which is determined by hitherto unreported four-center nodes formed by cyclic halogen bonding. Each node is built up by four Type II C-X'⋅⋅⋅X-M halogen-bonding contacts and include one Type I M-X⋅⋅⋅X-M interaction, thus giving the rhombic-like structure. These nodes serve as supramolecular synthons to form 2D layers or double chains of molecules linked by a halogen bond. Results of DFT calculations indicate that all contacts within the nodes are typical noncovalent interactions with the estimated strengths in the range 0.6-2.9 kcal mol-1 .
Collapse
Affiliation(s)
- Mariya A Kryukova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Mikhail A Kinzhalov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Andrey S Smirnov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| |
Collapse
|
48
|
Guo S, Sun C, Meng L, Zeng Y. The mechanism of ring-opening polymerization of L-lactide by ICl 3 catalysts: Halogen bond catalysis or participating in reactions? J Comput Chem 2019; 40:2827-2833. [PMID: 31463938 DOI: 10.1002/jcc.26059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023]
Abstract
The mechanism of ring-opening polymerization of L-lactide by iodine trichloride (ICl3 ) catalyst has been explored by using density functional theory (DFT) calculations and three catalytic pathways were proposed. The first and second pathways belong to the halogen bond catalysis, and the third pathway involves the ICl3 catalysts participating in reactions. When the carbonyl group was maintained involved in the reaction and activated catalytically by the halogen bond, there are two possible pathways. The first pathway involves only one transition state, and the second pathway requires two transition states. There is another pathway in which ICl3 directly participates in the reaction, it is named the third pathway. Two different transition states of the four-membered rings are generated successively, the transfer of I─O bonds determined the progress of the reaction. Theoretical calculations in this work provide the most basic understanding of ring-opening polymerization of L-lactide by ICl3 catalysts. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shuaifei Guo
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Cuihong Sun
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, People's Republic of China
| | - Lingpeng Meng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| |
Collapse
|
49
|
Cates EL, van Mourik T. Halogen bonding with the halogenabenzene bird structure, halobenzene, and halocyclopentadiene. J Comput Chem 2019; 40:2111-2118. [PMID: 31144356 DOI: 10.1002/jcc.25863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023]
Abstract
The ability of the "bird-like" halogenabenzene molecule, referred to as X-bird (XCl to At), to form halogen-bonded complexes with the nucleophiles H2 O and NH3 was investigated using double-hybrid density functional theory and the aug-cc-pVTZ/aug-cc-pVTZ-PP basis set. The structures and interaction energies were compared with 5-halocyclopenta-1,3-diene (halocyclopentadiene; an isomer of halogenabenzene) and halobenzene, also complexed with H2 O and NH3 . The unusual structure of the X-bird, with the halogen bonded to two carbon atoms, results in two distinct σ-holes, roughly at the extension of the C-X bonds. Based on the behavior of the interaction energy (which increases for heavier halogens) and van der Waals (vdW) ratio (which decreases for heavier halogens), it is concluded that the X-bird forms proper halogen bonds with H2 O and NH3 . The interaction energies are larger than those of the halogen-bonded complexes involving halobenzene and halocyclopentadiene, presumably due to the presence of a secondary interaction. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emma L Cates
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Tanja van Mourik
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| |
Collapse
|
50
|
Scilabra P, Terraneo G, Resnati G. The Chalcogen Bond in Crystalline Solids: A World Parallel to Halogen Bond. Acc Chem Res 2019; 52:1313-1324. [PMID: 31082186 DOI: 10.1021/acs.accounts.9b00037] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The distribution of the electron density around covalently bonded atoms is anisotropic, and this determines the presence, on atoms surface, of areas of higher and lower electron density where the electrostatic potential is frequently negative and positive, respectively. The ability of positive areas on atoms to form attractive interactions with electron rich sites became recently the subject of a flurry of papers. The halogen bond (HaB), the attractive interaction formed by halogens with nucleophiles, emerged as a quite common and dependable tool for controlling phenomena as diverse as the binding of small molecules to proteinaceous targets or the organization of molecular functional materials. The mindset developed in relation to the halogen bond prompted the interest in the tendency of elements of groups 13-16 of the periodic table to form analogous attractive interactions with nucleophiles. This Account addresses the chalcogen bond (ChB), the attractive interaction formed by group 16 elements with nucleophiles, by adopting a crystallographic point of view. Structures of organic derivatives are considered where chalcogen atoms form close contacts with nucleophiles in the geometry typical for chalcogen bonds. It is shown how sulfur, selenium, and tellurium can all form chalcogen bonds, the tendency to give rise to close contacts with nucleophiles increasing with the polarizability of the element. Also oxygen, when conveniently substituted, can form ChBs in crystalline solids. Chalcogen bonds can be strong enough to allow for the interaction to function as an effective and robust tool in crystal engineering. It is presented how chalcogen containing heteroaromatics, sulfides, disulfides, and selenium and tellurium analogues as well as some other molecular moieties can afford dependable chalcogen bond based supramolecular synthons. Particular attention is given to chalcogen containing azoles and their derivatives due to the relevance of these moieties in biosystems and molecular materials. It is shown how the interaction pattern around electrophilic chalcogen atoms frequently recalls the pattern around analogous halogen, pnictogen, and tetrel derivatives. For instance, directionalities of chalcogen bonds around sulfur and selenium in some thiazolium and selenazolium derivatives are similar to directionalities of halogen bonds around bromine and iodine in bromonium and iodonium compounds. This gives experimental evidence that similarities in the anisotropic distribution of the electron density in covalently bonded atoms translates in similarities in their recognition and self-assembly behavior. For instance, the analogies in interaction patterns of carbonitrile substituted elements of groups 17, 16, 15, and 14 will be presented. While the extensive experimental and theoretical data available in the literature prove that HaB and ChB form twin supramolecular synthons in the solid, more experimental information has to become available before such a statement can be safely extended to interactions wherein elements of groups 14 and 15 are the electrophiles. It will nevertheless be possible to develop some general heuristic principles for crystal engineering. Being based on the groups of the periodic table, these principles offer the advantage of being systematic.
Collapse
Affiliation(s)
- Patrick Scilabra
- Department of Chemistry, Materials, and Chemical Engineering ’’Giulio Natta’’, Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy
| | - Giancarlo Terraneo
- Department of Chemistry, Materials, and Chemical Engineering ’’Giulio Natta’’, Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy
| | - Giuseppe Resnati
- Department of Chemistry, Materials, and Chemical Engineering ’’Giulio Natta’’, Politecnico di Milano, via Mancinelli 7, I-20131 Milano, Italy
| |
Collapse
|