1
|
Stransky M, E J, Jurek Z, Santra R, Bean R, Ziaja B, Mancuso AP. Computational study of diffraction image formation from XFEL irradiated single ribosome molecule. Sci Rep 2024; 14:10617. [PMID: 38720133 PMCID: PMC11078940 DOI: 10.1038/s41598-024-61314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Single particle imaging at atomic resolution is perhaps one of the most desired goals for ultrafast X-ray science with X-ray free-electron lasers. Such a capability would create great opportunity within the biological sciences, as high-resolution structural information of biosamples that may not crystallize is essential for many research areas therein. In this paper, we report on a comprehensive computational study of diffraction image formation during single particle imaging of a macromolecule, containing over one hundred thousand non-hydrogen atoms. For this study, we use a dedicated simulation framework, SIMEX, available at the European XFEL facility. Our results demonstrate the full feasibility of computational single-particle imaging studies for biological samples of realistic size. This finding is important as it shows that the SIMEX platform can be used for simulations to inform relevant single-particle-imaging experiments and help to establish optimal parameters for these experiments. This will enable more focused and more efficient single-particle-imaging experiments at XFEL facilities, making the best use of the resource-intensive XFEL operation.
Collapse
Affiliation(s)
- Michal Stransky
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland.
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic.
| | - Juncheng E
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Zoltan Jurek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607, Hamburg, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
E J, Stransky M, Shen Z, Jurek Z, Fortmann-Grote C, Bean R, Santra R, Ziaja B, Mancuso AP. Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser. Sci Rep 2023; 13:16359. [PMID: 37773512 PMCID: PMC10541445 DOI: 10.1038/s41598-023-43298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The noise caused by sample heterogeneity (including sample solvent) has been identified as one of the determinant factors for a successful X-ray single-particle imaging experiment. It influences both the radiation damage process that occurs during illumination as well as the scattering patterns captured by the detector. Here, we investigate the impact of water layer thickness and radiation damage on orientation recovery from diffraction patterns of the nitrogenase iron protein. Orientation recovery is a critical step for single-particle imaging. It enables to sort a set of diffraction patterns scattered by identical particles placed at unknown orientations and assemble them into a 3D reciprocal space volume. The recovery quality is characterized by a "disconcurrence" metric. Our results show that while a water layer mitigates protein damage, the noise generated by the scattering from it can introduce challenges for orientation recovery and is anticipated to cause problems in the phase retrieval process to extract the desired protein structure. Compared to these disadvantageous effects due to the thick water layer, the effects of radiation damage on the orientation recovery are relatively small. Therefore, minimizing the amount of residual sample solvent should be considered a crucial step in improving the fidelity and resolution of X-ray single-particle imaging experiments.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Michal Stransky
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Zhou Shen
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607, Hamburg, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
4
|
Kierspel T, Kadek A, Barran P, Bellina B, Bijedic A, Brodmerkel MN, Commandeur J, Caleman C, Damjanović T, Dawod I, De Santis E, Lekkas A, Lorenzen K, Morillo LL, Mandl T, Marklund EG, Papanastasiou D, Ramakers LAI, Schweikhard L, Simke F, Sinelnikova A, Smyrnakis A, Timneanu N, Uetrecht C. Coherent diffractive imaging of proteins and viral capsids: simulating MS SPIDOC. Anal Bioanal Chem 2023:10.1007/s00216-023-04658-y. [PMID: 37014373 PMCID: PMC10329076 DOI: 10.1007/s00216-023-04658-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown. We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-resolution diffractive imaging data (q < 0.3 nm-1) can be collected with only a few X-ray pulses. Such low-resolution data are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if MS SPIDOC is used as sample delivery.
Collapse
Affiliation(s)
- Thomas Kierspel
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
- Leibniz Institute of Virology (LIV), Martinistraße 52, 20251, Hamburg, Germany.
| | - Alan Kadek
- Leibniz Institute of Virology (LIV), Martinistraße 52, 20251, Hamburg, Germany
- Institute of Microbiology of the Czech Academy of Sciences - BIOCEV, Průmyslová 595, Vestec, 252 50, Czech Republic
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Perdita Barran
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Bruno Bellina
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Adi Bijedic
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
| | - Maxim N Brodmerkel
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Jan Commandeur
- MS Vision, Televisieweg 40, 1322 AM, Almere, Netherlands
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
- Centre for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, E22607, Hamburg, Germany
| | - Tomislav Damjanović
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Martinistraße 52, 20251, Hamburg, Germany
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Faculty V: School of Life Sciences, University of Siegen, Adolf-Reichwein-Str. 2a, 57076, Siegen, Germany
| | - Ibrahim Dawod
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
| | - Emiliano De Santis
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Alexandros Lekkas
- Fasmatech, Technological and Scientific Park of Attica Lefkippos, NCSR DEMOKRITOS Patr, Gregoriou E' 27, Neapoleos Str. 153 41, Agia Paraskevi, Attica, Greece
| | | | | | - Thomas Mandl
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
- University of Applied Sciences Technikum Wien, Höchstädtpl. 6, 1200, Vienna, Austria
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123, Uppsala, Sweden
| | - Dimitris Papanastasiou
- Fasmatech, Technological and Scientific Park of Attica Lefkippos, NCSR DEMOKRITOS Patr, Gregoriou E' 27, Neapoleos Str. 153 41, Agia Paraskevi, Attica, Greece
| | - Lennart A I Ramakers
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Lutz Schweikhard
- Institut Für Physik, Universität Greifswald, Felix-Hausdorff-Str. 6, 17489, Greifswald, Germany
| | - Florian Simke
- Institut Für Physik, Universität Greifswald, Felix-Hausdorff-Str. 6, 17489, Greifswald, Germany
| | - Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
| | - Athanasios Smyrnakis
- Fasmatech, Technological and Scientific Park of Attica Lefkippos, NCSR DEMOKRITOS Patr, Gregoriou E' 27, Neapoleos Str. 153 41, Agia Paraskevi, Attica, Greece
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
- Leibniz Institute of Virology (LIV), Martinistraße 52, 20251, Hamburg, Germany.
- Faculty V: School of Life Sciences, University of Siegen, Adolf-Reichwein-Str. 2a, 57076, Siegen, Germany.
| |
Collapse
|
5
|
E J, Kim Y, Bielecki J, Sikorski M, de Wijn R, Fortmann-Grote C, Sztuk-Dambietz J, Koliyadu JCP, Letrun R, Kirkwood HJ, Sato T, Bean R, Mancuso AP, Kim C. Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064101. [PMID: 36411869 PMCID: PMC9675053 DOI: 10.1063/4.0000169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Bielecki
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Sikorski
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. de Wijn
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - R. Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - T. Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - C. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Yumoto H, Koyama T, Suzuki A, Joti Y, Niida Y, Tono K, Bessho Y, Yabashi M, Nishino Y, Ohashi H. High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging. Nat Commun 2022; 13:5300. [PMID: 36100607 PMCID: PMC9470745 DOI: 10.1038/s41467-022-33014-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
With the emergence of X-ray free-electron lasers (XFELs), coherent diffractive imaging (CDI) has acquired a capability for single-particle imaging (SPI) of non-crystalline objects under non-cryogenic conditions. However, the single-shot spatial resolution is limited to ~5 nanometres primarily because of insufficient fluence. Here, we present a CDI technique whereby high resolution is achieved with very-high-fluence X-ray focusing using multilayer mirrors with nanometre precision. The optics can focus 4-keV XFEL down to 60 nm × 110 nm and realize a fluence of >3 × 105 J cm−2 pulse−1 or >4 × 1012 photons μm−2 pulse−1 with a tenfold increase in the total gain compared to conventional optics due to the high demagnification. Further, the imaging of fixed-target metallic nanoparticles in solution attained an unprecedented 2-nm resolution in single-XFEL-pulse exposure. These findings can further expand the capabilities of SPI to explore the relationships between dynamic structures and functions of native biomolecular complexes. Here, the authors realize an ultra-high fluence X-ray laser by high-gain multilayer focusing optics. This enables in-solution imaging with 2-nm resolution in a single-pulse exposure, making strides toward biomolecular imaging under physiological conditions.
Collapse
Affiliation(s)
- Hirokatsu Yumoto
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Takahisa Koyama
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Akihiro Suzuki
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshiya Niida
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshitaka Bessho
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshinori Nishino
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan.
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
7
|
Peck A, Chang HY, Dujardin A, Ramalingam D, Uervirojnangkoorn M, Wang Z, Mancuso A, Poitevin F, Yoon CH. Skopi: a simulation package for diffractive imaging of noncrystalline biomolecules. J Appl Crystallogr 2022; 55:1002-1010. [PMID: 35974743 PMCID: PMC9348890 DOI: 10.1107/s1600576722005994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) have the ability to produce ultra-bright femtosecond X-ray pulses for coherent diffraction imaging of biomolecules. While the development of methods and algorithms for macromolecular crystallography is now mature, XFEL experiments involving aerosolized or solvated biomolecular samples offer new challenges in terms of both experimental design and data processing. Skopi is a simulation package that can generate single-hit diffraction images for reconstruction algorithms, multi-hit diffraction images of aggregated particles for training machine learning classifiers using labeled data, diffraction images of randomly distributed particles for fluctuation X-ray scattering algorithms, and diffraction images of reference and target particles for holographic reconstruction algorithms. Skopi is a resource to aid feasibility studies and advance the development of algorithms for noncrystalline experiments at XFEL facilities.
Collapse
Affiliation(s)
- Ariana Peck
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hsing-Yin Chang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Antoine Dujardin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Deeban Ramalingam
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Monarin Uervirojnangkoorn
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Zhaoyou Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adrian Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
8
|
Tokuhisa A, Akinaga Y, Terayama K, Okamoto Y, Okuno Y. Single-Image Super-Resolution Improvement of X-ray Single-Particle Diffraction Images Using a Convolutional Neural Network. J Chem Inf Model 2022; 62:3352-3364. [PMID: 35820663 PMCID: PMC9326892 DOI: 10.1021/acs.jcim.2c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Femtosecond X-ray pulse lasers are promising probes for
the elucidation
of the multiconformational states of biomolecules because they enable
snapshots of single biomolecules to be observed as coherent diffraction
images. Multi-image processing using an X-ray free-electron laser
has proven to be a successful structural analysis method for viruses.
However, the performance of single-particle analysis (SPA) for flexible
biomolecules with sizes ≤100 nm remains difficult. Owing to
the multiconformational states of biomolecules and noisy character
of diffraction images, diffraction image improvement by multi-image
processing is often ineffective for such molecules. Herein, a single-image
super-resolution (SR) model was constructed using an SR convolutional
neural network (SRCNN). Data preparation was performed in silico to
consider the actual observation situation with unknown molecular orientations
and the fluctuation of molecular structure and incident X-ray intensity.
It was demonstrated that the trained SRCNN model improved the single-particle
diffraction image quality, corresponding to an observed image with
an incident X-ray intensity (approximately three to seven times higher
than the original X-ray intensity), while retaining the individuality
of the diffraction images. The feasibility of SPA for flexible biomolecules
with sizes ≤100 nm was dramatically increased by introducing
the SRCNN improvement at the beginning of the various structural analysis
schemes.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinobu Akinaga
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,VINAS Co., Ltd., Keihan Dojima Bldg., Dojima 2 1 31, Kita-ku, Osaka 530-0003, Japan
| | - Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Yuji Okamoto
- Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
9
|
Stransky M, Jurek Z, Santra R, Mancuso AP, Ziaja B. Tree-Code Based Improvement of Computational Performance of the X-ray-Matter-Interaction Simulation Tool XMDYN. Molecules 2022; 27:molecules27134206. [PMID: 35807452 PMCID: PMC9267930 DOI: 10.3390/molecules27134206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we report on incorporating for the first time tree-algorithm based solvers into the molecular dynamics code, XMDYN. XMDYN was developed to describe the interaction of ultrafast X-ray pulses with atomic assemblies. It is also a part of the simulation platform, SIMEX, developed for computational single-particle imaging studies at the SPB/SFX instrument of the European XFEL facility. In order to improve the XMDYN performance, we incorporated the existing tree-algorithm based Coulomb solver, PEPC, into the code, and developed a dedicated tree-algorithm based secondary ionization solver, now also included in the XMDYN code. These extensions enable computationally efficient simulations of X-ray irradiated large atomic assemblies, e.g., large protein systems or viruses that are of strong interest for ultrafast X-ray science. The XMDYN-based preparatory simulations can now guide future single-particle-imaging experiments at the free-electron-laser facility, EuXFEL.
Collapse
Affiliation(s)
- Michal Stransky
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany;
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
- Correspondence: (M.S.); (Z.J.)
| | - Zoltan Jurek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Correspondence: (M.S.); (Z.J.)
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany;
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
| |
Collapse
|
10
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
11
|
Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser. Sci Rep 2021; 11:17976. [PMID: 34504156 PMCID: PMC8429720 DOI: 10.1038/s41598-021-97142-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.
Collapse
|
12
|
Ho PJ, Fouda AEA, Li K, Doumy G, Young L. Ultraintense, ultrashort pulse X-ray scattering in small molecules. Faraday Discuss 2021; 228:139-160. [PMID: 33576361 DOI: 10.1039/d0fd00106f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examine X-ray scattering from an isolated organic molecule from the linear to nonlinear absorptive regime. In the nonlinear regime, we explore the importance of both the coherent and incoherent channels and observe the onset of nonlinear behavior as a function of pulse duration and energy. In the linear regime, we test the sensitivity of the scattering signal to molecular bonding and electronic correlation via calculations using the independent atom model (IAM), Hartree-Fock (HF) and density functional theory (DFT). Finally, we describe how coherent X-ray scattering can be used to directly visualize femtosecond charge transfer and dissociation within a single molecule undergoing X-ray multiphoton absorption.
Collapse
Affiliation(s)
- Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Adam E A Fouda
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Jin R, Abdullah MM, Jurek Z, Santra R, Son SK. Transient ionization potential depression in nonthermal dense plasmas at high x-ray intensity. Phys Rev E 2021; 103:023203. [PMID: 33735970 DOI: 10.1103/physreve.103.023203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/22/2021] [Indexed: 11/07/2022]
Abstract
The advent of x-ray free-electron lasers (XFELs), which provide intense ultrashort x-ray pulses, has brought a new way of creating and analyzing hot and warm dense plasmas in the laboratory. Because of the ultrashort pulse duration, the XFEL-produced plasma will be out of equilibrium at the beginning, and even the electronic subsystem may not reach thermal equilibrium while interacting with a femtosecond timescale pulse. In the dense plasma, the ionization potential depression (IPD) induced by the plasma environment plays a crucial role for understanding and modeling microscopic dynamical processes. However, all theoretical approaches for IPD have been based on local thermal equilibrium (LTE), and it has been controversial to use LTE IPD models for the nonthermal situation. In this work, we propose a non-LTE (NLTE) approach to calculate the IPD effect by combining a quantum-mechanical electronic-structure calculation and a classical molecular dynamics simulation. This hybrid approach enables us to investigate the time evolution of ionization potentials and IPDs during and after the interaction with XFEL pulses, without the limitation of the LTE assumption. In our NLTE approach, the transient IPD values are presented as distributions evolving with time, which cannot be captured by conventional LTE-based models. The time-integrated ionization potential values are in good agreement with benchmark experimental data on solid-density aluminum plasma and other theoretical predictions based on LTE. The present work is promising to provide critical insights into nonequilibrium dynamics of dense plasma formation and thermalization induced by XFEL pulses.
Collapse
Affiliation(s)
- Rui Jin
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | | | - Zoltan Jurek
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.,Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Sang-Kil Son
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
14
|
Shen Z, Teo CZW, Ayyer K, Loh ND. An encryption-decryption framework to validating single-particle imaging. Sci Rep 2021; 11:971. [PMID: 33441629 PMCID: PMC7806625 DOI: 10.1038/s41598-020-79589-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022] Open
Abstract
We propose an encryption-decryption framework for validating diffraction intensity volumes reconstructed using single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) when the ground truth volume is absent. This conceptual framework exploits each reconstructed volumes' ability to decipher latent variables (e.g. orientations) of unseen sentinel diffraction patterns. Using this framework, we quantify novel measures of orientation disconcurrence, inconsistency, and disagreement between the decryptions by two independently reconstructed volumes. We also study how these measures can be used to define data sufficiency and its relation to spatial resolution, and the practical consequences of focusing XFEL pulses to smaller foci. This conceptual framework overcomes critical ambiguities in using Fourier Shell Correlation (FSC) as a validation measure for SPI. Finally, we show how this encryption-decryption framework naturally leads to an information-theoretic reformulation of the resolving power of XFEL-SPI, which we hope will lead to principled frameworks for experiment and instrument design.
Collapse
Affiliation(s)
- Zhou Shen
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore, Singapore
| | - Colin Zhi Wei Teo
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore, Singapore
| | - Kartik Ayyer
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - N Duane Loh
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore, Singapore.
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore, Singapore.
| |
Collapse
|
15
|
Kärcher V, Roling S, Samoylova L, Buzmakov A, Zastrau U, Appel K, Yurkov M, Schneidmiller E, Siewert F, Zacharias H. Impact of real mirror profiles inside a split-and-delay unit on the spatial intensity profile in pump/probe experiments at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:350-361. [PMID: 33399587 PMCID: PMC7842232 DOI: 10.1107/s1600577520014563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/03/2020] [Indexed: 05/08/2023]
Abstract
For the High-Energy-Density (HED) beamline at the SASE2 undulator of the European XFEL, a hard X-ray split-and-delay unit (SDU) has been built enabling time-resolved pump/probe experiments with photon energies between 5 keV and 24 keV. The optical layout of the SDU is based on geometrical wavefront splitting and multilayer Bragg mirrors. Maximum delays between Δτ = ±1 ps at 24 keV and Δτ = ±23 ps at 5 keV will be possible. Time-dependent wavefront propagation simulations were performed by means of the Synchrotron Radiation Workshop (SRW) software in order to investigate the impact of the optical layout, including diffraction on the beam splitter and recombiner edges and the three-dimensional topography of all eight mirrors, on the spatio-temporal properties of the XFEL pulses. The radiation is generated from noise by the code FAST which simulates the self-amplified spontaneous emission (SASE) process. A fast Fourier transformation evaluation of the disturbed interference pattern yields for ideal mirror surfaces a coherence time of τc = 0.23 fs and deduces one of τc = 0.21 fs for the real mirrors, thus with an error of Δτ = 0.02 fs which is smaller than the deviation resulting from shot-to-shot fluctuations of SASE2 pulses. The wavefronts are focused by means of compound refractive lenses in order to achieve fluences of a few hundred mJ mm-2 within a spot width of 20 µm (FWHM) diameter. Coherence effects and optics imperfections increase the peak intensity between 200 and 400% for pulse delays within the coherence time. Additionally, the influence of two off-set mirrors in the HED beamline are discussed. Further, we show the fluence distribution for Δz = ±3 mm around the focal spot along the optical axis. The simulations show that the topographies of the mirrors of the SDU are good enough to support X-ray pump/X-ray probe experiments.
Collapse
Affiliation(s)
- V. Kärcher
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - S. Roling
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - A. Buzmakov
- FSRC ‘Crystallography and Photonics’ RAS, 119333 Moscow, Russia
| | - U. Zastrau
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - K. Appel
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - M. Yurkov
- Deutsches Elektronen-Synchrotron, 22603 Hamburg, Germany
| | | | - F. Siewert
- Helmholtz-Zentrum Berlin für Materialien und Energie, Department Optics and Beamlines, 12489 Berlin, Germany
| | - H. Zacharias
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
16
|
Gureyev TE, Kozlov A, Morgan AJ, Martin AV, Quiney HM. Effect of radiation damage and illumination variability on signal-to-noise ratio in X-ray free-electron laser single-particle imaging. Acta Crystallogr A Found Adv 2020; 76:664-676. [DOI: 10.1107/s2053273320012188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022] Open
Abstract
The deterioration of both the signal-to-noise ratio and the spatial resolution in the electron-density distribution reconstructed from diffraction intensities collected at different orientations of a sample is analysed theoretically with respect to the radiation damage to the sample and the variations in the X-ray intensities illuminating different copies of the sample. The simple analytical expressions and numerical estimates obtained for models of radiation damage and incident X-ray pulses may be helpful in planning X-ray free-electron laser (XFEL) imaging experiments and in analysis of experimental data. This approach to the analysis of partially coherent X-ray imaging configurations can potentially be used for analysis of other forms of imaging where the temporal behaviour of the sample and the incident intensity during exposure may affect the inverse problem of sample reconstruction.
Collapse
|
17
|
Kozlov A, Gureyev TE, Paganin DM, Martin AV, Caleman C, Quiney HM. Recovery of undamaged electron-density maps in the presence of damage-induced partial coherence in single-particle imaging. IUCRJ 2020; 7:1114-1123. [PMID: 33209322 PMCID: PMC7642773 DOI: 10.1107/s2052252520013019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Resolving the electronic structure of single biological molecules in their native state was among the primary motivations behind X-ray free-electron lasers. The ultra-short pulses they produce can outrun the atomic motion induced by radiation damage, but the electronic structure of the sample is still significantly modified from its original state. This paper explores the decoherence of the scattered signal induced by temporal evolution of the electronic structure in the sample molecule. It is shown that the undamaged electron density of a single-molecule sample can often be retrieved using only the two most occupied modes from the coherent mode decomposition of the partially coherent diffraction fluence.
Collapse
Affiliation(s)
- Alexander Kozlov
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timur E. Gureyev
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Faculty of Health Sciences, University of Sydney, Sydney, NSW 2006, Australia
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - David M. Paganin
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew V. Martin
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- School of Physics, RMIT University, Melbourne, Victoria 3000, Australia
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Harry M. Quiney
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
18
|
Tokuhisa A, Kanada R, Chiba S, Terayama K, Isaka Y, Ma B, Kamiya N, Okuno Y. Coarse-Grained Diffraction Template Matching Model to Retrieve Multiconformational Models for Biomolecule Structures from Noisy Diffraction Patterns. J Chem Inf Model 2020; 60:2803-2818. [PMID: 32469517 DOI: 10.1021/acs.jcim.0c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular imaging using X-ray free-electron lasers (XFELs) has been successfully applied to serial femtosecond crystallography. However, the application of single-particle analysis for structure determination using XFELs with 100 nm or smaller biomolecules has two practical problems: the incomplete diffraction data sets for reconstructing 3D assembled structures and the heterogeneous conformational states of samples. A new diffraction template matching method is thus presented here to retrieve a plausible 3D structural model based on single noisy target diffraction patterns, assuming candidate structures. Two concepts are introduced here: prompt candidate diffraction, generated by enhanced sampled coarse-grain (CG) candidate structures, and efficient molecular orientation searching for matching based on Bayesian optimization. A CG model-based diffraction-matching protocol is proposed that achieves a 100-fold speed increase compared to exhaustive diffraction matching using an all-atom model. The conditions that enable multiconformational analysis were also investigated by simulated diffraction data for various conformational states of chromatin and ribosomes. The proposed method can enable multiconformational analysis, with a structural resolution of at least 20 Å for 270-800 Å flexible biomolecules, in experimental single-particle structure analyses that employ XFELs.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Computational Science, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Kanada
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Chiba
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kei Terayama
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuta Isaka
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Biao Ma
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Narutoshi Kamiya
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasushi Okuno
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
19
|
Nass K, Gorel A, Abdullah MM, V Martin A, Kloos M, Marinelli A, Aquila A, Barends TRM, Decker FJ, Bruce Doak R, Foucar L, Hartmann E, Hilpert M, Hunter MS, Jurek Z, Koglin JE, Kozlov A, Lutman AA, Kovacs GN, Roome CM, Shoeman RL, Santra R, Quiney HM, Ziaja B, Boutet S, Schlichting I. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat Commun 2020; 11:1814. [PMID: 32286284 PMCID: PMC7156470 DOI: 10.1038/s41467-020-15610-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) enable crystallographic structure determination beyond the limitations imposed upon synchrotron measurements by radiation damage. The need for very short XFEL pulses is relieved through gating of Bragg diffraction by loss of crystalline order as damage progresses, but not if ionization events are spatially non-uniform due to underlying elemental distributions, as in biological samples. Indeed, correlated movements of iron and sulfur ions were observed in XFEL-irradiated ferredoxin microcrystals using unusually long pulses of 80 fs. Here, we report a femtosecond time-resolved X-ray pump/X-ray probe experiment on protein nanocrystals. We observe changes in the protein backbone and aromatic residues as well as disulfide bridges. Simulations show that the latter’s correlated structural dynamics are much slower than expected for the predicted high atomic charge states due to significant impact of ion caging and plasma electron screening. This indicates that dense-environment effects can strongly affect local radiation damage-induced structural dynamics. The local X-ray-induced dynamics that occur in protein crystals during serial femtosecond crystallography (SFX) measurements at XFELs are not well understood. Here the authors performed a time-resolved X-ray pump X-ray probe SFX experiment, and they observe distinct structural changes in the disulfide bridges and peptide backbone of proteins; complementing theoretical approaches allow them to further characterize the details of the X-ray induced ionization and local structural dynamics.
Collapse
Affiliation(s)
- Karol Nass
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Alexander Gorel
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Malik M Abdullah
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew V Martin
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia
| | - Marco Kloos
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - Andrew Aquila
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Elisabeth Hartmann
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mark S Hunter
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jason E Koglin
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Kozlov
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.,Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355, Hamburg, Germany
| | - Harry M Quiney
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Beata Ziaja
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland.
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Ho PJ, Daurer BJ, Hantke MF, Bielecki J, Al Haddad A, Bucher M, Doumy G, Ferguson KR, Flückiger L, Gorkhover T, Iwan B, Knight C, Moeller S, Osipov T, Ray D, Southworth SH, Svenda M, Timneanu N, Ulmer A, Walter P, Hajdu J, Young L, Maia FRNC, Bostedt C. The role of transient resonances for ultra-fast imaging of single sucrose nanoclusters. Nat Commun 2020; 11:167. [PMID: 31919346 PMCID: PMC6952381 DOI: 10.1038/s41467-019-13905-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2019] [Indexed: 11/09/2022] Open
Abstract
Intense x-ray free-electron laser (XFEL) pulses hold great promise for imaging function in nanoscale and biological systems with atomic resolution. So far, however, the spatial resolution obtained from single shot experiments lags averaging static experiments. Here we report on a combined computational and experimental study about ultrafast diffractive imaging of sucrose clusters which are benchmark organic samples. Our theoretical model matches the experimental data from the water window to the keV x-ray regime. The large-scale dynamic scattering calculations reveal that transient phenomena driven by non-linear x-ray interaction are decisive for ultrafast imaging applications. Our study illuminates the complex interplay of the imaging process with the rapidly changing transient electronic structures in XFEL experiments and shows how computational models allow optimization of the parameters for ultrafast imaging experiments. X-ray free electron lasers provide high photon flux to explore single particle diffraction imaging of biological samples. Here the authors present dynamic electronic structure calculations and benchmark them to single-particle XFEL diffraction data of sucrose clusters to predict optimal single-shot imaging conditions.
Collapse
Affiliation(s)
- Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| | - Benedikt J Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Max F Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.,Chemistry Research Laboratory, Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.,European XFEL GmbH, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - Andre Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Maximilian Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Ken R Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Leonie Flückiger
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Tais Gorkhover
- Stanford Pulse Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Bianca Iwan
- Stanford Pulse Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Christopher Knight
- Computational Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Stefan Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Timur Osipov
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Dipanwita Ray
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.,Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623, Berlin, Germany
| | - Peter Walter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA.,Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA. .,Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA. .,Paul-Scherrer Institute, CH-5232, Villigen PSI, Switzerland. .,LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
21
|
Östlin C, Timneanu N, Caleman C, Martin AV. Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers? STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:044103. [PMID: 31463335 PMCID: PMC6701976 DOI: 10.1063/1.5098309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/31/2019] [Indexed: 05/24/2023]
Abstract
The prospect of single particle imaging with atomic resolution is one of the scientific drivers for the development of X-ray free-electron lasers. The assumption since the beginning has been that damage to the sample caused by intense X-ray pulses is one of the limiting factors for achieving subnanometer X-ray imaging of single particles and that X-ray pulses need to be as short as possible. Based on the molecular dynamics simulations of proteins in X-ray fields of various durations (5 fs, 25 fs, and 50 fs), we show that the noise in the diffracted signal caused by radiation damage is less than what can be expected from other sources, such as sample inhomogeneity and X-ray shot-to-shot variations. These findings show a different aspect of the feasibility of high-resolution single particle imaging using free-electron lasers, where employing X-ray pulses of longer durations could still provide a useful diffraction signal above the noise due to the Coulomb explosion.
Collapse
Affiliation(s)
- C Östlin
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - N Timneanu
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - C Caleman
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - A V Martin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
22
|
Giewekemeyer K, Aquila A, Loh NTD, Chushkin Y, Shanks KS, Weiss J, Tate MW, Philipp HT, Stern S, Vagovic P, Mehrjoo M, Teo C, Barthelmess M, Zontone F, Chang C, Tiberio RC, Sakdinawat A, Williams GJ, Gruner SM, Mancuso AP. Experimental 3D coherent diffractive imaging from photon-sparse random projections. IUCRJ 2019; 6:357-365. [PMID: 31098017 PMCID: PMC6503918 DOI: 10.1107/s2052252519002781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/24/2019] [Indexed: 05/19/2023]
Abstract
The routine atomic resolution structure determination of single particles is expected to have profound implications for probing structure-function relationships in systems ranging from energy-storage materials to biological molecules. Extremely bright ultrashort-pulse X-ray sources - X-ray free-electron lasers (XFELs) - provide X-rays that can be used to probe ensembles of nearly identical nanoscale particles. When combined with coherent diffractive imaging, these objects can be imaged; however, as the resolution of the images approaches the atomic scale, the measured data are increasingly difficult to obtain and, during an X-ray pulse, the number of photons incident on the 2D detector is much smaller than the number of pixels. This latter concern, the signal 'sparsity', materially impedes the application of the method. An experimental analog using a conventional X-ray source is demonstrated and yields signal levels comparable with those expected from single biomolecules illuminated by focused XFEL pulses. The analog experiment provides an invaluable cross check on the fidelity of the reconstructed data that is not available during XFEL experiments. Using these experimental data, it is established that a sparsity of order 1.3 × 10-3 photons per pixel per frame can be overcome, lending vital insight to the solution of the atomic resolution XFEL single-particle imaging problem by experimentally demonstrating 3D coherent diffractive imaging from photon-sparse random projections.
Collapse
Affiliation(s)
| | - A. Aquila
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N.-T. D. Loh
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
| | - Y. Chushkin
- ESRF – The European Synchrotron, 71 avenue des Martyrs, 38000 Grenoble, France
| | - K. S. Shanks
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - J.T. Weiss
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - M. W. Tate
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - H. T. Philipp
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - S. Stern
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - P. Vagovic
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M. Mehrjoo
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Teo
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
| | - M. Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - F. Zontone
- ESRF – The European Synchrotron, 71 avenue des Martyrs, 38000 Grenoble, France
| | - C. Chang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - R. C. Tiberio
- Stanford Nano Shared Facilities, Stanford University, 348 Via Pueblo, Stanford, CA 94305, USA
| | - A. Sakdinawat
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - G. J. Williams
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - S. M. Gruner
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - A. P. Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
23
|
Tegze M, Bortel G. Incorporating particle symmetry into orientation determination in single-particle imaging. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2018; 74:512-517. [PMID: 30182937 DOI: 10.1107/s2053273318008999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/20/2018] [Indexed: 11/10/2022]
Abstract
In coherent-diffraction-imaging experiments X-ray diffraction patterns of identical particles are recorded. The particles are injected into the X-ray free-electron laser (XFEL) beam in random orientations. If the particle has symmetry, finding the orientation of a pattern can be ambiguous. With some modifications, the correlation-maximization method can find the relative orientations of the diffraction patterns for the case of symmetric particles as well. After convergence, the correlation maps show the symmetry of the particle and can be used to determine the symmetry elements and their orientations. The C factor, slightly modified for the symmetric case, can indicate the consistency of the assembled three-dimensional intensity distribution.
Collapse
Affiliation(s)
- Miklós Tegze
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 49, Hungary
| | - Gábor Bortel
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 49, Hungary
| |
Collapse
|
24
|
Current Status of Single Particle Imaging with X-ray Lasers. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|