1
|
Zou Z, Tiwary P. Enhanced Sampling of Crystal Nucleation with Graph Representation Learnt Variables. J Phys Chem B 2024. [PMID: 38502931 DOI: 10.1021/acs.jpcb.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this study, we present a graph neural network (GNN)-based learning approach using an autoencoder setup to derive low-dimensional variables from features observed in experimental crystal structures. These variables are then biased in enhanced sampling to observe state-to-state transitions and reliable thermodynamic weights. In our approach, we used simple convolution and pooling methods. To verify the effectiveness of our protocol, we examined the nucleation of various allotropes and polymorphs of iron and glycine in their molten states. Our graph latent variables, when biased in well-tempered metadynamics, consistently show transitions between states and achieve accurate thermodynamic rankings in agreement with experiments, both of which are indicators of dependable sampling. This underscores the strength and promise of our GNN variables for improved sampling. The protocol shown here should be applicable for other systems and other sampling methods.
Collapse
Affiliation(s)
- Ziyue Zou
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
- Institute for Physical Science and Technology, University of Maryland, College Park 20742, Maryland, United States
- University of Maryland Institute for Health Computing, Rockville, Maryland 20852, United States
| |
Collapse
|
2
|
Broadhurst E, Wilson CJG, Zissimou GA, Padrón Gómez MA, Vasconcelos DML, Constantinides CP, Koutentis PA, Ayala AP, Parsons S. The Effect of High Pressure on Polymorphs of a Derivative of Blatter's Radical: Identification of the Structural Signatures of Subtle Phase Transitions. CRYSTAL GROWTH & DESIGN 2023; 23:1915-1924. [PMID: 36879770 PMCID: PMC9983015 DOI: 10.1021/acs.cgd.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The effect of pressure on the α and β polymorphs of a derivative of Blatter's radical, 3-phenyl-1-(pyrid-2-yl)-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl, has been investigated using single-crystal X-ray diffraction to maximum pressures of 5.76 and 7.42 GPa, respectively. The most compressible crystallographic direction in both structures lies parallel to π-stacking interactions, which semiempirical Pixel calculations indicate are also the strongest interactions present. The mechanism of compression in perpendicular directions is determined by void distributions. Discontinuities in the vibrational frequencies observed in Raman spectra measured between ambient pressure and ∼5.5 GPa show that both polymorphs undergo phase transitions, the α phase at 0.8 GPa and the β phase at 2.1 GPa. The structural signatures of the transitions, which signal the onset of compression of initially more rigid intermolecular contacts, were identified from the trends in the occupied and unoccupied volumes of the unit cell with pressure and in the case of the β phase by deviations from an ideal model of compression defined by Birch-Murnaghan equations of state.
Collapse
Affiliation(s)
- Edward
T. Broadhurst
- EaStCHEM
School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains
Road, Edinburgh, EH9 3FJ, Scotland
| | - Cameron J. G. Wilson
- EaStCHEM
School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains
Road, Edinburgh, EH9 3FJ, Scotland
| | | | | | | | - Christos P. Constantinides
- Department
of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128-1491, United States
| | | | - Alejandro P. Ayala
- Federal
University of Ceará, Physics Department, 65455-900, Fortaleza, CE, Brazil
| | - Simon Parsons
- EaStCHEM
School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains
Road, Edinburgh, EH9 3FJ, Scotland
| |
Collapse
|
3
|
Verma V, Mitchell H, Guo M, Hodnett BK, Heng JYY. Studying the impact of the pre-exponential factor on templated nucleation. Faraday Discuss 2022; 235:199-218. [PMID: 35388818 DOI: 10.1039/d1fd00101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditionally, the enhancement of nucleation rates in the presence of heterogeneous surfaces in crystallisation processes has been attributed to the modification of the interfacial energy of the system according to the classical nucleation theory. However, recent developments have shown that heterogeneous surfaces instead alter the pre-exponential factor of nucleation. In this work, the nucleation kinetics of glycine and diglycine in aqueous solutions have been explored in the presence and absence of a heterogeneous surface. Results from induction time experiments show that the presence of a heterogeneous surface increases the pre-exponential factor by 2-fold or more for both glycine and diglycine, while the interfacial energy remains unchanged for both species. This study suggests that the heterogeneous surface enhances the nucleation rate via hydrogen bond formation with both glycine and diglycine. This is verified by hydrogen bond propensity calculations, molecular functionality analysis, and calculation of the time taken for a solute molecule to attach to the growing nucleus, which is an order of magnitude shorter than the estimated lifetime of the hydrogen bond. The effect of the heterosurface is of greater magnitude for diglycine than for glycine, which may be due to the heightened molecular complementarity between the hydrogen bond donor and acceptor sites on diglycine and the heterosurface.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Hamish Mitchell
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Mingxia Guo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Benjamin K Hodnett
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK. .,Institute of Molecular Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Affiliation(s)
- Elena Boldyreva
- Novosibirsk State University ul. Pirogova, 2 Novosibirsk 630090 Russian Federation
- Boreskov Institute of Catalysis Siberian Branch of Russian Academy of Sciences Lavrentieva ave., 5 Novosibirsk 630090 Russian Federation
| |
Collapse
|
5
|
Broadhurst ET, Xu H, Clabbers MTB, Lightowler M, Nudelman F, Zou X, Parsons S. Polymorph evolution during crystal growth studied by 3D electron diffraction. IUCRJ 2020; 7:5-9. [PMID: 31949899 PMCID: PMC6949601 DOI: 10.1107/s2052252519016105] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 05/24/2023]
Abstract
3D electron diffraction (3DED) has been used to follow polymorph evolution in the crystallization of glycine from aqueous solution. The three polymorphs of glycine which exist under ambient conditions follow the stability order β < α < γ. The least stable β polymorph forms within the first 3 min, but this begins to yield the α-form after only 1 min more. Both structures could be determined from continuous rotation electron diffraction data collected in less than 20 s on crystals of thickness ∼100 nm. Even though the γ-form is thermodynamically the most stable polymorph, kinetics favour the α-form, which dominates after prolonged standing. In the same sample, some β and one crystallite of the γ polymorph were also observed.
Collapse
Affiliation(s)
- Edward T. Broadhurst
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Max T. B. Clabbers
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Molly Lightowler
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fabio Nudelman
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Simon Parsons
- EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh EH9 3FJ, UK
| |
Collapse
|
6
|
Červinka C, Fulem M. Cohesive properties of the crystalline phases of twenty proteinogenic α-aminoacids from first-principles calculations. Phys Chem Chem Phys 2019; 21:18501-18515. [PMID: 31411212 DOI: 10.1039/c9cp03102b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cohesive properties (lattice and cohesive energy of the crystal and corresponding sublimation enthalpy) of the complete set of twenty enantiopure anhydrous proteinogenic amino acids are investigated using first-principles calculations. In contrast to neutral amino acid molecules in the vapor phase, all amino acids form crystals in their zwitterionic form. Therefore, reliable ab initio calculations of the proton transfer energy are an indispensable step of such calculations. Simplifying procedures, designed to rationalize the computational cost of the quasi-harmonic approximation, which proves too demanding if performed fully at the given quantum level of theory, are presented and tested. For this purpose, atomic multipoles (up to the quadrupoles) for the amoeba force field are parametrized for all amino acid zwitterions. While the calculated lattice energies of the amino acids range from 235-458 kJ mol-1 in absolute value, the proton transfer energies typically amount to 100-220 kJ mol-1, which translates to sublimation enthalpies ranging from 117-202 kJ mol-1, appreciably exceeding the sublimation enthalpy values common for nonionic molecular crystals. Critically assessed experimental data on sublimation enthalpies are used as a benchmark for comparison of the data calculated in this work. Cohesive properties of most amino acids calculated in this work, combining the PBE-D3(BJ)/PAW and CCSD(T)-F12/aug-cc-pVDZ levels of theory used for predictions of the lattice energies and of the proton transfer energies, respectively, exhibit a reasonable agreement with the experiment. At the same time, this work contains the first published data on cohesive properties for several enantiopure amino acids.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic.
| | | |
Collapse
|
7
|
Intermolecular Interactions in Functional Crystalline Materials: From Data to Knowledge. CRYSTALS 2019. [DOI: 10.3390/cryst9090478] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intermolecular interactions of organic, inorganic, and organometallic compounds are the key to many composition–structure and structure–property networks. In this review, some of these relations and the tools developed by the Cambridge Crystallographic Data Center (CCDC) to analyze them and design solid forms with desired properties are described. The potential of studies supported by the Cambridge Structural Database (CSD)-Materials tools for investigation of dynamic processes in crystals, for analysis of biologically active, high energy, optical, (electro)conductive, and other functional crystalline materials, and for the prediction of novel solid forms (polymorphs, co-crystals, solvates) are discussed. Besides, some unusual applications, the potential for further development and limitations of the CCDC software are reported.
Collapse
|
8
|
Bull CL, Funnell NP, Ridley CJ, Pulham CR, Coster PL, Tellam JP, Marshall WG. Pressure-induced isosymmetric phase transition in biurea. CrystEngComm 2019. [DOI: 10.1039/c9ce01028a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An isosymmetric phase transition of biurea has been found in which the molecules appear to “snap” from one conformer to another upon compression.
Collapse
Affiliation(s)
- Craig L. Bull
- ISIS Neutron and Muon Facility
- Rutherford Appleton Laboratory
- Chilton
- U. K
| | | | | | - Colin R. Pulham
- EastCHEM School of Chemistry
- Joseph Black Building
- Edinburgh
- UK
| | - Paul L. Coster
- EastCHEM School of Chemistry
- Joseph Black Building
- Edinburgh
- UK
| | - James P. Tellam
- ISIS Neutron and Muon Facility
- Rutherford Appleton Laboratory
- Chilton
- U. K
| | | |
Collapse
|
9
|
Ward MR, Younis S, Cruz-Cabeza AJ, Bull CL, Funnell NP, Oswald IDH. Discovery and recovery of delta p-aminobenzoic acid. CrystEngComm 2019. [DOI: 10.1039/c8ce01882k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new high-pressure recoverable form has been observed in the model system, p-aminobenzoic acid.
Collapse
Affiliation(s)
- Martin R. Ward
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS)
- University of Strathclyde
- Glasgow
- UK
| | - Shatha Younis
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS)
- University of Strathclyde
- Glasgow
- UK
| | - Aurora J. Cruz-Cabeza
- School of Chemical Engineering and Analytical Science
- University of Manchester
- M13 9PL Manchester
- UK
| | - Craig L. Bull
- ISIS Neutron and Muon Source
- Science and Technology Facilities Council
- Rutherford Appleton Laboratory
- Didcot
- UK
| | - Nicholas P. Funnell
- ISIS Neutron and Muon Source
- Science and Technology Facilities Council
- Rutherford Appleton Laboratory
- Didcot
- UK
| | - Iain D. H. Oswald
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS)
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
10
|
Connor LE, Vassileiou AD, Halbert GW, Johnston BF, Oswald IDH. Structural investigation and compression of a co-crystal of indomethacin and saccharin. CrystEngComm 2019. [DOI: 10.1039/c9ce00838a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indomethacin : saccharin cocrystal has been studied under high pressure conditions and the amide interactions compared with previous high pressure studies.
Collapse
Affiliation(s)
- Lauren E. Connor
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
- Collaborative International Research Programme: University of Strathclyde
| | | | - Gavin W. Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation
| | - Blair F. Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation
| | - Iain D. H. Oswald
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
11
|
Giordano N, Beavers CM, Kamenev KV, Marshall WG, Moggach SA, Patterson SD, Teat SJ, Warren JE, Wood PA, Parsons S. High-pressure polymorphism in l-threonine between ambient pressure and 22 GPa. CrystEngComm 2019. [DOI: 10.1039/c9ce00388f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amino acid l-threonine undergoes three phase transitions between ambient pressure and 22.3 GPa which modify both hydrogen bonding and the molecular conformation.
Collapse
Affiliation(s)
- Nico Giordano
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
- Advanced Light Source
| | - Christine M. Beavers
- Advanced Light Source
- Berkeley
- USA
- Department of Earth & Planetary Sciences
- University of California
| | - Konstantin V. Kamenev
- Centre for Science at Extreme Conditions and School of Engineering
- The University of Edinburgh
- Edinburgh
- UK
| | - William G. Marshall
- ISIS Pulsed Neutron and Muon Facility
- STFC Rutherford Appleton Laboratory
- Harwell Science and Innovation Campus
- Harwell Oxford
- UK
| | - Stephen A. Moggach
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - Simon D. Patterson
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | | | - John E. Warren
- Synchrotron Radiation Source
- CCLRC Daresbury Laboratory
- Warrington
- UK
| | | | - Simon Parsons
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| |
Collapse
|
12
|
Cerreia Vioglio P, Mollica G, Juramy M, Hughes CE, Williams PA, Ziarelli F, Viel S, Thureau P, Harris KDM. Insights into the Crystallization and Structural Evolution of Glycine Dihydrate by In Situ Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:6619-6623. [DOI: 10.1002/anie.201801114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/01/2018] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Colan E. Hughes
- School of ChemistryCardiff University Park Place Cardiff Wales CF10 3AT UK
| | - P. Andrew Williams
- School of ChemistryCardiff University Park Place Cardiff Wales CF10 3AT UK
| | - Fabio Ziarelli
- Aix Marseille Univ, CNRSCentrale Marseille, FSCM FR1739 Marseille France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR Marseille France
- Institut Universitaire de France Paris France
| | | | | |
Collapse
|
13
|
Cerreia Vioglio P, Mollica G, Juramy M, Hughes CE, Williams PA, Ziarelli F, Viel S, Thureau P, Harris KDM. Insights into the Crystallization and Structural Evolution of Glycine Dihydrate by In Situ Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Colan E. Hughes
- School of ChemistryCardiff University Park Place Cardiff Wales CF10 3AT UK
| | - P. Andrew Williams
- School of ChemistryCardiff University Park Place Cardiff Wales CF10 3AT UK
| | - Fabio Ziarelli
- Aix Marseille Univ, CNRSCentrale Marseille, FSCM FR1739 Marseille France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR Marseille France
- Institut Universitaire de France Paris France
| | | | | |
Collapse
|
14
|
Shinozaki A, Komatsu K, Kagi H, Fujimoto C, Machida S, Sano-Furukawa A, Hattori T. Behavior of intermolecular interactions in α-glycine under high pressure. J Chem Phys 2018; 148:044507. [PMID: 29390805 DOI: 10.1063/1.5009980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pressure-response on the crystal structure of deuterated α-glycine was investigated at room temperature, using powder and single-crystal X-ray diffraction, and powder neutron diffraction measurements under high pressure. No phase change was observed up to 8.7 GPa, although anisotropy of the lattice compressibility was found. No significant changes in the compressibility and the intramolecular distance between non-deuterated α-glycine and deuterated α-glycine were observed. Neutron diffraction measurements indicated the distance of the intermolecular D⋯O bond along with the c-axis increased with compression up to 6.4 GPa. The distance of another D⋯O bond along with the a-axis decreased with increasing pressure and became the shortest intermolecular hydrogen bond above 3 GPa. In contrast, the lengths of the bifurcated N-D⋯O and C-D⋯O hydrogen bonds, which are formed between the layers of the α-glycine molecules along the b-axis, decreased significantly with increasing pressure. The decrease of the intermolecular distances resulted in the largest compressibility of the b-axis, compared to the other two axes. The Hirshfeld analysis suggested that the reduction of the void region size, rather than shrinkage of the strong N-D⋯O hydrogen bonds, occurred with compression.
Collapse
Affiliation(s)
- Ayako Shinozaki
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kazuki Komatsu
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Chikako Fujimoto
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Shinichi Machida
- CROSS, Neutron Science and Technology Center, IQBRC Building, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Asami Sano-Furukawa
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Takanori Hattori
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|