1
|
Stransky M, E J, Jurek Z, Santra R, Bean R, Ziaja B, Mancuso AP. Computational study of diffraction image formation from XFEL irradiated single ribosome molecule. Sci Rep 2024; 14:10617. [PMID: 38720133 PMCID: PMC11078940 DOI: 10.1038/s41598-024-61314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Single particle imaging at atomic resolution is perhaps one of the most desired goals for ultrafast X-ray science with X-ray free-electron lasers. Such a capability would create great opportunity within the biological sciences, as high-resolution structural information of biosamples that may not crystallize is essential for many research areas therein. In this paper, we report on a comprehensive computational study of diffraction image formation during single particle imaging of a macromolecule, containing over one hundred thousand non-hydrogen atoms. For this study, we use a dedicated simulation framework, SIMEX, available at the European XFEL facility. Our results demonstrate the full feasibility of computational single-particle imaging studies for biological samples of realistic size. This finding is important as it shows that the SIMEX platform can be used for simulations to inform relevant single-particle-imaging experiments and help to establish optimal parameters for these experiments. This will enable more focused and more efficient single-particle-imaging experiments at XFEL facilities, making the best use of the resource-intensive XFEL operation.
Collapse
Affiliation(s)
- Michal Stransky
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland.
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic.
| | - Juncheng E
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Zoltan Jurek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607, Hamburg, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
Jin R, Jurek Z, Santra R, Son SK. Plasma environmental effects in the atomic structure for simulating x-ray free-electron-laser-heated solid-density matter. Phys Rev E 2022; 106:015206. [PMID: 35974549 DOI: 10.1103/physreve.106.015206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
High energy density (HED) matter exists extensively in the Universe, and it can be created with extreme conditions in laboratory facilities such as x-ray free-electron lasers (XFEL). In HED matter, the electronic structure of individual atomic ions is influenced by a dense plasma environment, and one of the most significant phenomena is the ionization potential depression (IPD). Incorporation of the IPD effects is of great importance in accurate modeling of dense plasmas. All theoretical treatments of IPD so far have been based on the assumption of local thermodynamic equilibrium, but its validity is questionable in ultrafast formation dynamics of dense plasmas, particularly when interacting with intense XFEL pulses. A treatment of transient IPD, based on an electronic-structure calculation of an atom in the presence of a plasma environment described by classical particles, has recently been proposed [Phys. Rev. E 103, 023203 (2021)2470-004510.1103/PhysRevE.103.023203], but its application to and impact on plasma dynamics simulations have not been investigated yet. In this work, we extend XMDYN, a hybrid quantum-classical approach combining Monte Carlo and molecular dynamics, by incorporating the proposed IPD treatment into plasma dynamics simulations. We demonstrate the importance of the IPD effects in theoretical modeling of aluminum dense plasmas by comparing two XMDYN simulations: one with electronic-structure calculations of isolated atoms (without IPD) and the other with those of atoms embedded in a plasma (with IPD). At equilibrium, the mean charge obtained in the plasma simulation with IPD is in good agreement with the full quantum-mechanical average-atom model. The present approach promises to be a reliable tool to simulate the creation and nonequilibrium evolution of dense plasmas induced by ultraintense and ultrashort XFEL pulses.
Collapse
Affiliation(s)
- Rui Jin
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Zoltan Jurek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestrasse 9-11, 22607 Hamburg, Germany
| | - Sang-Kil Son
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Jin R, Abdullah MM, Jurek Z, Santra R, Son SK. Transient ionization potential depression in nonthermal dense plasmas at high x-ray intensity. Phys Rev E 2021; 103:023203. [PMID: 33735970 DOI: 10.1103/physreve.103.023203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/22/2021] [Indexed: 11/07/2022]
Abstract
The advent of x-ray free-electron lasers (XFELs), which provide intense ultrashort x-ray pulses, has brought a new way of creating and analyzing hot and warm dense plasmas in the laboratory. Because of the ultrashort pulse duration, the XFEL-produced plasma will be out of equilibrium at the beginning, and even the electronic subsystem may not reach thermal equilibrium while interacting with a femtosecond timescale pulse. In the dense plasma, the ionization potential depression (IPD) induced by the plasma environment plays a crucial role for understanding and modeling microscopic dynamical processes. However, all theoretical approaches for IPD have been based on local thermal equilibrium (LTE), and it has been controversial to use LTE IPD models for the nonthermal situation. In this work, we propose a non-LTE (NLTE) approach to calculate the IPD effect by combining a quantum-mechanical electronic-structure calculation and a classical molecular dynamics simulation. This hybrid approach enables us to investigate the time evolution of ionization potentials and IPDs during and after the interaction with XFEL pulses, without the limitation of the LTE assumption. In our NLTE approach, the transient IPD values are presented as distributions evolving with time, which cannot be captured by conventional LTE-based models. The time-integrated ionization potential values are in good agreement with benchmark experimental data on solid-density aluminum plasma and other theoretical predictions based on LTE. The present work is promising to provide critical insights into nonequilibrium dynamics of dense plasma formation and thermalization induced by XFEL pulses.
Collapse
Affiliation(s)
- Rui Jin
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | | | - Zoltan Jurek
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.,Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Sang-Kil Son
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|