1
|
Tremlett CJ, Stubbs J, Stuart WS, Shaw Stewart PD, West J, Orville AM, Tews I, Harmer NJ. Small but mighty: the power of microcrystals in structural biology. IUCRJ 2025; 12:262-279. [PMID: 40080159 DOI: 10.1107/s2052252525001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
Advancements in macromolecular crystallography, driven by improved sources and cryocooling techniques, have enabled the use of increasingly smaller crystals for structure determination, with microfocus beamlines now widely accessible. Initially developed for challenging samples, these techniques have culminated in advanced beamlines such as VMXm. Here, an in vacuo sample environment improves the signal-to-noise ratio in X-ray diffraction experiments, and thus enables the use of submicrometre crystals. The advancement of techniques such as microcrystal electron diffraction (MicroED) for atomic-level insights into charged states and hydrogen positions, along with room-temperature crystallography to observe physiological states via serial crystallography, has driven a resurgence in the use of microcrystals. Reproducibly preparing small crystals, especially from samples that typically yield larger crystals, requires considerable effort, as no one singular approach guarantees optimal crystals for every technique. This review discusses methods for generating such small crystals, including mechanical crushing and batch crystallization with seeding, and evaluates their compatibility with microcrystal data-collection modalities. Additionally, we examine sample-delivery methods, which are crucial for selecting appropriate crystallization strategies. Establishing reliable protocols for sample preparation and delivery opens new avenues for macromolecular crystallography, particularly in the rapidly progressing field of time-resolved crystallography.
Collapse
Affiliation(s)
- Courtney J Tremlett
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Jack Stubbs
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - William S Stuart
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | | | - Jonathan West
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Allen M Orville
- Diamond Light Source (United Kingdom), Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ivo Tews
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
2
|
Zhao S, Wu L, Xu Y, Nie Y. Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep 2025; 42:67-92. [PMID: 39403014 DOI: 10.1039/d4np00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.
Collapse
Affiliation(s)
- Songyin Zhao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Jaho S, Axford D, Gu DH, Hough MA, Owen RL. Use of fixed targets for serial crystallography. Methods Enzymol 2024; 709:29-55. [PMID: 39608947 DOI: 10.1016/bs.mie.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
In serial crystallography, large numbers of microcrystals are sequentially delivered to an X-ray beam and a diffraction pattern is obtained from each crystal. This serial approach was developed primarily for X-ray Free Electron Lasers (XFELs) where crystals are destroyed by the beam but is increasingly used in synchrotron experiments. The combination of XFEL and synchrotron-based serial crystallography enables time-resolved experiments over an extremely wide range of time domains - from femtoseconds to seconds - and allows intact or pristine structures free of the effects of radiation damage to be obtained. Several approaches have been developed for sample delivery with varying levels of sample efficiency and ease of use. In the fixed target approach, microcrystals are loaded onto a solid support which is then rastered through the X-ray beam. The key advantages of fixed targets are that every crystal loaded can be used for data collection, and that precise control of when crystals are moved into the beam allows for time-resolved experiments over a very wide range of time domains as well as multi-shot experiments characterising the effects of the X-ray beam on the sample. We describe the application of fixed targets for serial crystallography as implemented at beamline I24 at Diamond Light Source and at the SACLA XFEL. We discuss methodologies for time-resolved serial crystallography in fixed targets and describe best practices for obtaining high-quality structures covering sample preparation, data collection strategies and data analysis pipelines.
Collapse
Affiliation(s)
- Sofia Jaho
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom.
| | - Danny Axford
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Do-Heon Gu
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Michael A Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Robin L Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom.
| |
Collapse
|
4
|
Perrett S, Fadini A, Hutchison CDM, Bhattacharya S, Morrison C, Turkot O, Jakobsen MB, Größler M, Licón-Saláiz J, Griese F, Flewett S, Valerio J, Schulz J, Biednov M, Jiang Y, Han H, Yousef H, Khakhulin D, Milne C, Barty A, van Thor JJ. Kilohertz droplet-on-demand serial femtosecond crystallography at the European XFEL station FXE. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024310. [PMID: 38638699 PMCID: PMC11026113 DOI: 10.1063/4.0000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
X-ray Free Electron Lasers (XFELs) allow the collection of high-quality serial femtosecond crystallography data. The next generation of megahertz superconducting FELs promises to drastically reduce data collection times, enabling the capture of more structures with higher signal-to-noise ratios and facilitating more complex experiments. Currently, gas dynamic virtual nozzles (GDVNs) stand as the sole delivery method capable of best utilizing the repetition rate of megahertz sources for crystallography. However, their substantial sample consumption renders their use impractical for many protein targets in serial crystallography experiments. Here, we present a novel application of a droplet-on-demand injection method, which allowed operation at 47 kHz at the European XFEL (EuXFEL) by tailoring a multi-droplet injection scheme for each macro-pulse. We demonstrate a collection rate of 150 000 indexed patterns per hour. We show that the performance and effective data collection rate are comparable to GDVN, with a sample consumption reduction of two orders of magnitude. We present lysozyme crystallographic data using the Large Pixel Detector at the femtosecond x-ray experiment endstation. Significant improvement of the crystallographic statistics was made by correcting for a systematic drift of the photon energy in the EuXFEL macro-pulse train, which was characterized from indexing the individual frames in the pulse train. This is the highest resolution protein structure collected and reported at the EuXFEL at 1.38 Å resolution.
Collapse
Affiliation(s)
- Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Sayantan Bhattacharya
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Cade Morrison
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Mads Bregenholt Jakobsen
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | - Michael Größler
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | - José Licón-Saláiz
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | | | - Samuel Flewett
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | - Joana Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Yifeng Jiang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Huijong Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Hazem Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Anton Barty
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | - Jasper J. van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Carrillo M, Mason TJ, Karpik A, Martiel I, Kepa MW, McAuley KE, Beale JH, Padeste C. Micro-structured polymer fixed targets for serial crystallography at synchrotrons and XFELs. IUCRJ 2023; 10:678-693. [PMID: 37727961 PMCID: PMC10619457 DOI: 10.1107/s2052252523007595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Fixed targets are a popular form of sample-delivery system used in serial crystallography at synchrotron and X-ray free-electron laser sources. They offer a wide range of sample-preparation options and are generally easy to use. The supports are typically made from silicon, quartz or polymer. Of these, currently, only silicon offers the ability to perform an aperture-aligned data collection where crystals are loaded into cavities in precise locations and sequentially rastered through, in step with the X-ray pulses. The polymer-based fixed targets have lacked the precision fabrication to enable this data-collection strategy and have been limited to directed-raster scans with crystals randomly distributed across the polymer surface. Here, the fabrication and first results from a new polymer-based fixed target, the micro-structured polymer fixed targets (MISP chips), are presented. MISP chips, like those made from silicon, have a precise array of cavities and fiducial markers. They consist of a structured polymer membrane and a stabilization frame. Crystals can be loaded into the cavities and the excess crystallization solution removed through apertures at their base. The fiducial markers allow for a rapid calculation of the aperture locations. The chips have a low X-ray background and, since they are optically transparent, also allow for an a priori analysis of crystal locations. This location mapping could, ultimately, optimize hit rates towards 100%. A black version of the MISP chip was produced to reduce light contamination for optical-pump/X-ray probe experiments. A study of the loading properties of the chips reveals that these types of fixed targets are best optimized for crystals of the order of 25 µm, but quality data can be collected from crystals as small as 5 µm. With the development of these chips, it has been proved that polymer-based fixed targets can be made with the precision required for aperture-alignment-based data-collection strategies. Further work can now be directed towards more cost-effective mass fabrication to make their use more sustainable for serial crystallography facilities and users.
Collapse
Affiliation(s)
- Melissa Carrillo
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thomas J. Mason
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Agnieszka Karpik
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Engineering, Klosterzelgstrasse 2, 5210 Windisch, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Michal W. Kepa
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | | | - John H. Beale
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
6
|
Bjelčić M, Sigfridsson Clauss KGV, Aurelius O, Milas M, Nan J, Ursby T. Anaerobic fixed-target serial crystallography using sandwiched silicon nitride membranes. Acta Crystallogr D Struct Biol 2023; 79:1018-1025. [PMID: 37860963 PMCID: PMC10619425 DOI: 10.1107/s205979832300880x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
In recent years, the emergence of serial crystallography, initially pioneered at X-ray free-electron lasers (XFELs), has sparked a growing interest in collecting macromolecular crystallographic data at room temperature. Various fixed-target serial crystallography techniques have been developed, ranging from commercially available chips to in-house designs implemented at different synchrotron facilities. Nevertheless, there is currently no commercially available chip (known to the authors) specifically designed for the direct handling of oxygen-sensitive samples. This study presents a methodology employing silicon nitride chips arranged in a `sandwich' configuration, enabling reliable room-temperature data collection from oxygen-sensitive samples. The method involves the utilization of a custom-made 3D-printed assembling tool and a MX sample holder. To validate the effectiveness of the proposed method, deoxyhemoglobin and methemoglobin samples were investigated using the BioMAX X-ray macromolecular crystallography beamline, the Balder X-ray absorption spectroscopy beamline and UV-Vis absorption spectroscopy.
Collapse
Affiliation(s)
- Monika Bjelčić
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | | | - Oskar Aurelius
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
- LINXS Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| |
Collapse
|
7
|
Makita H, Zhang M, Yano J, Kern J. Room temperature crystallography and X-ray spectroscopy of metalloenzymes. Methods Enzymol 2023; 688:307-348. [PMID: 37748830 PMCID: PMC10799221 DOI: 10.1016/bs.mie.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The ultrashort (10s of femtoseconds) X-ray pulses generated by X-ray free electron lasers enable the measurement of X-ray diffraction and spectroscopic data from radiation-sensitive metalloenzymes at room temperature while mostly avoiding the effects of radiation damage usually encountered when performing such experiments at synchrotron sources. Here we discuss an approach to measure both X-ray emission and X-ray crystallographic data at the same time from the same sample volume. The droplet-on-tape setup described allows for efficient sample use and the integration of different reaction triggering options in order to conduct time-resolved studies with limited sample amounts. The approach is illustrated by two examples, photosystem II that catalyzes the light-driven oxidation of water to oxygen, and isopenicillin N synthase, an enzyme that catalyzes the double ring cyclization of a tripeptide precursor into the β-lactam isopenicillin and can be activated by oxygen exposure. We describe the necessary steps to obtain microcrystals of both proteins as well as the operation procedure for the drop-on-tape setup and details of the data acquisition and processing involved in this experiment. At the end, we present how the combination of time-resolved X-ray emission spectra and diffraction data can be used to improve the knowledge about the enzyme reaction mechanism.
Collapse
Affiliation(s)
- Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
8
|
Chaturvedi S, Jaber Sathik Rifayee SB, Waheed SO, Wildey J, Warner C, Schofield CJ, Karabencheva-Christova TG, Christov CZ. Can Second Coordination Sphere and Long-Range Interactions Modulate Hydrogen Atom Transfer in a Non-Heme Fe(II)-Dependent Histone Demethylase? JACS AU 2022; 2:2169-2186. [PMID: 36186565 PMCID: PMC9516565 DOI: 10.1021/jacsau.2c00345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 05/10/2023]
Abstract
Fe(II)-dependent oxygenases employ hydrogen atom transfer (HAT) to produce a myriad of products. Understanding how such enzymes use dynamic processes beyond the immediate vicinity of the active site to control the selectivity and efficiency of HAT is important for metalloenzyme engineering; however, obtaining such knowledge by experiments is challenging. This study develops a computational framework for identifying second coordination sphere (SCS) and especially long-range (LR) residues relevant for catalysis through dynamic cross-correlation analysis (DCCA) using the human histone demethylase PHF8 (KDM7B) as a model oxygenase. Furthermore, the study explores the mechanistic pathways of influence of the SCS and LR residues on the HAT reaction. To demonstrate the plausibility of the approach, we investigated the effect of a PHF8 F279S clinical mutation associated with X-linked intellectual disability, which has been experimentally shown to ablate PHF8-catalyzed demethylation. In agreement, the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies showed a change in the H31-14K9me2 substrate orientation and an increased HAT barrier. We systematically analyzed the pathways by which the identified SCS and LR residues may influence HAT by exploring changes in H3K9me2 substrate orientation, interdomain correlated motions, HAT transition state stabilization, reaction energetics, electron transfer mechanism, and alterations in the intrinsic electric field of PHF8. Importantly, SCS and LR variations decrease key motions of α9-α12 of the JmjC domain toward the Fe(IV)-center that are associated with tighter binding of the H31-14K9me2 substrate. SCS and LR residues alter the intrinsic electric field of the enzyme along the reaction coordinate and change the individual energetic contributions of residues toward TS stabilization. The overall results suggest that DCCA can indeed identify non-active-site residues relevant for catalysis. The substitutions of such dynamically correlated residues might be used as a tool to tune HAT in non-heme Fe(II)- and 2OG-dependent enzymes.
Collapse
Affiliation(s)
- Shobhit
S. Chaturvedi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan49931, United States
| | | | - Sodiq O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan49931, United States
| | - Jon Wildey
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan49931, United
States
| | - Cait Warner
- Department
of Biological Sciences, Michigan Technological
University, Houghton, Michigan49931, United
States
| | - Christopher J. Schofield
- The
Chemistry Research Laboratory, Department of Chemistry and the Ineos
Oxford Institute for Antimicrobial Research, University of Oxford, Mansfield Road, OxfordOX1 3TA, United Kingdom
| | | | - Christo Z. Christov
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan49931, United States
| |
Collapse
|
9
|
Rabe P, Walla CC, Goodyear NK, Welsh J, Southwart R, Clifton I, Linyard JDS, Tumber A, Claridge TDW, Myers WK, Schofield CJ. Spectroscopic studies reveal details of substrate-induced conformational changes distant from the active site in isopenicillin N synthase. J Biol Chem 2022; 298:102249. [PMID: 35835215 PMCID: PMC9403350 DOI: 10.1016/j.jbc.2022.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022] Open
Abstract
Isopenicillin N synthase (IPNS) catalyzes formation of the β-lactam and thiazolidine rings of isopenicillin N from its linear tripeptide l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) substrate in an iron- and dioxygen (O2)-dependent four-electron oxidation without precedent in current synthetic chemistry. Recent X-ray free-electron laser studies including time-resolved serial femtosecond crystallography show that binding of O2 to the IPNS–Fe(II)–ACV complex induces unexpected conformational changes in α-helices on the surface of IPNS, in particular in α3 and α10. However, how substrate binding leads to conformational changes away from the active site is unknown. Here, using detailed 19F NMR and electron paramagnetic resonance experiments with labeled IPNS variants, we investigated motions in α3 and α10 induced by binding of ferrous iron, ACV, and the O2 analog nitric oxide, using the less mobile α6 for comparison. 19F NMR studies were carried out on singly and doubly labeled α3, α6, and α10 variants at different temperatures. In addition, double electron–electron resonance electron paramagnetic resonance analysis was carried out on doubly spin-labeled variants. The combined spectroscopic and crystallographic results reveal that substantial conformational changes in regions of IPNS including α3 and α10 are induced by binding of ACV and nitric oxide. Since IPNS is a member of the structural superfamily of 2-oxoglutarate-dependent oxygenases and related enzymes, related conformational changes may be of general importance in nonheme oxygenase catalysis.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| | - Carla C Walla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Noelle K Goodyear
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jordan Welsh
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Rebecca Southwart
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ian Clifton
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - James D S Linyard
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tim D W Claridge
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - William K Myers
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
10
|
Perry GS, Das M, Woon ECY. Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. J Med Chem 2021; 64:16974-17003. [PMID: 34792334 DOI: 10.1021/acs.jmedchem.1c01694] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The AlkB family of nucleic acid demethylases is currently of intense chemical, biological, and medical interest because of its critical roles in several key cellular processes, including epigenetic gene regulation, RNA metabolism, and DNA repair. Emerging evidence suggests that dysregulation of AlkB demethylases may underlie the pathogenesis of several human diseases, particularly obesity, diabetes, and cancer. Hence there is strong interest in developing selective inhibitors for these enzymes to facilitate their mechanistic and functional studies and to validate their therapeutic potential. Herein we review the remarkable advances made over the past 20 years in AlkB demethylase inhibition research. We discuss the rational design of reported inhibitors, their mode-of-binding, selectivity, cellular activity, and therapeutic opportunities. We further discuss unexplored structural elements of the AlkB subfamilies and propose potential strategies to enable subfamily selectivity. It is hoped that this perspective will inspire novel inhibitor design and advance drug discovery research in this field.
Collapse
Affiliation(s)
- Gemma S Perry
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mohua Das
- Lab of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Esther C Y Woon
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
11
|
Hough MA, Owen RL. Serial synchrotron and XFEL crystallography for studies of metalloprotein catalysis. Curr Opin Struct Biol 2021; 71:232-238. [PMID: 34455163 PMCID: PMC8667872 DOI: 10.1016/j.sbi.2021.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
An estimated half of all proteins contain a metal, with these being essential for a tremendous variety of biological functions. X-ray crystallography is the major method for obtaining structures at high resolution of these metalloproteins, but there are considerable challenges to obtain intact structures due to the effects of radiation damage. Serial crystallography offers the prospect of determining low-dose synchrotron or effectively damage free XFEL structures at room temperature and enables time-resolved or dose-resolved approaches. Complementary spectroscopic data can validate redox and or ligand states within metalloprotein crystals. In this opinion, we discuss developments in the application of serial crystallographic approaches to metalloproteins and comment on future directions.
Collapse
Affiliation(s)
- Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
12
|
Harnden KA, Roy A, Hosseinzadeh P. Overview of Methods for Purification and Characterization of Metalloproteins. Curr Protoc 2021; 1:e234. [PMID: 34436821 DOI: 10.1002/cpz1.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metalloproteins make up one third of all proteins and perform some of the most essential reactions on earth. The unique properties of the metal ions within these proteins, and in particular of redox-active metal ions, enables the use of a number of characterization techniques. It also necessitates unique considerations in terms of purification and characterization. In this overview, we describe the considerations and methods used for metalloprotein purification and characterization. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
| | - Anindya Roy
- University of Washington, Department of Biochemistry, Institute for Protein Design, Seattle, Washington
| | | |
Collapse
|
13
|
Rabe P, Kamps JJAG, Sutherlin KD, Linyard JDS, Aller P, Pham CC, Makita H, Clifton I, McDonough MA, Leissing TM, Shutin D, Lang PA, Butryn A, Brem J, Gul S, Fuller FD, Kim IS, Cheah MH, Fransson T, Bhowmick A, Young ID, O'Riordan L, Brewster AS, Pettinati I, Doyle M, Joti Y, Owada S, Tono K, Batyuk A, Hunter MS, Alonso-Mori R, Bergmann U, Owen RL, Sauter NK, Claridge TDW, Robinson CV, Yachandra VK, Yano J, Kern JF, Orville AM, Schofield CJ. X-ray free-electron laser studies reveal correlated motion during isopenicillin N synthase catalysis. SCIENCE ADVANCES 2021; 7:eabh0250. [PMID: 34417180 PMCID: PMC8378823 DOI: 10.1126/sciadv.abh0250] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/29/2021] [Indexed: 05/23/2023]
Abstract
Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jos J A G Kamps
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Kyle D Sutherlin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James D S Linyard
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pierre Aller
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Cindy C Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ian Clifton
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Denis Shutin
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Agata Butryn
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Franklin D Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 751 20 Uppsala, Sweden
| | - Thomas Fransson
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Lee O'Riordan
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ilaria Pettinati
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Margaret Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706, USA
| | - Robin L Owen
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Allen M Orville
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
14
|
Abstract
Serial crystallography (SX) is an emerging X-ray crystallographic method for determining macromolecule structures. It can address concerns regarding the limitations of data collected by conventional crystallography techniques, which require cryogenic-temperature environments and allow crystals to accumulate radiation damage. Time-resolved SX studies using the pump-probe methodology provide useful information for understanding macromolecular mechanisms and structure fluctuation dynamics. This Special Issue deals with the serial crystallography approach using an X-ray free electron laser (XFEL) and synchrotron X-ray source, and reviews recent SX research involving synchrotron use. These reports provide insights into future serial crystallography research trends and approaches.
Collapse
|
15
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|