1
|
Helliwell JR, Massera C. The four Rs and crystal structure analysis: reliability, reproducibility, replicability and reusability. J Appl Crystallogr 2022; 55:1351-1358. [PMID: 36249510 PMCID: PMC9533758 DOI: 10.1107/s1600576722007208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Within science, of which crystallography is a key part, there are questions posed to all fields that challenge the trust in results. The US National Academies of Sciences, Engineering and Medicine published a thorough report in 2019 on the Reproducibility and Replicability of Science: replicability being where a totally new study attempts to confirm if a phenomenon can be seen independently of another study. Data reuse is a key term in the FAIR data accord [Wilkinson et al. (2016). Sci. Data, 3, 160018], where the acronym FAIR means findable, accessible, interoperable and reusable. In the social sciences, the acronym FACT (namely fairness, accuracy, confidentiality and transparency) has emerged, the idea being that data should be FACTual to ensure trust [van der Aalst et al. (2017). Bus. Inf. Syst. Eng. 59, 311-313]. A distinction also must be made between accuracy and precision; indeed, the authors' lectures at the European Crystallography School ECS6 independently emphasized the need for use of other methods as well as crystal structure analysis to establish accuracy in biological and chemical/material functional contexts. The efforts by disparate science communities to introduce new terms to ensure trust have merit for discussion in crystallographic teaching commissions and possible adoption by crystallographers too.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Chiara Massera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Viale delle Scienze 17/A, Parma 43124, Italy
| |
Collapse
|
2
|
Structural Characterization of Zinc and Cadmium Complexes Derived from N-(4-carboxybenzyl)pyridinium: Revisiting the Structure of (Cbp)2ZnBr2 and Influence of the Metal on Carboxylate Coordination Mode. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Gruene T, Holstein JJ, Clever GH, Keppler B. Establishing electron diffraction in chemical crystallography. Nat Rev Chem 2021; 5:660-668. [PMID: 37118416 DOI: 10.1038/s41570-021-00302-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The emerging field of 3D electron diffraction (3D ED) opens new opportunities for structure determination from sub-micrometre-sized crystals. Although the foundations of this technology emerged earlier, the past decade has seen developments in cryo-electron microscopy and (X-ray) crystallography that particularly enable the widespread use of 3D ED. This Perspective describes to chemists and chemical crystallographers just how similar electron and X-ray diffraction are and discusses their complementary aspects. We wish to establish 3D ED in the broader chemistry community, such that electron crystallography becomes a common part of the analytical chemistry toolkit. With a suitable instrument at their disposal, every skilled crystallographer can quickly learn to perform structure determinations using 3D ED.
Collapse
|
4
|
Grabowski M, Macnar JM, Cymborowski M, Cooper DR, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Dauter Z, Rupp B, Wlodawer A, Jaskolski M, Minor W. Rapid response to emerging biomedical challenges and threats. IUCRJ 2021; 8:395-407. [PMID: 33953926 PMCID: PMC8086160 DOI: 10.1107/s2052252521003018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 05/13/2023]
Abstract
As part of the global mobilization to combat the present pandemic, almost 100 000 COVID-19-related papers have been published and nearly a thousand models of macromolecules encoded by SARS-CoV-2 have been deposited in the Protein Data Bank within less than a year. The avalanche of new structural data has given rise to multiple resources dedicated to assessing the correctness and quality of structural data and models. Here, an approach to evaluate the massive amounts of such data using the resource https://covid19.bioreproducibility.org is described, which offers a template that could be used in large-scale initiatives undertaken in response to future biomedical crises. Broader use of the described methodology could considerably curtail information noise and significantly improve the reproducibility of biomedical research.
Collapse
Affiliation(s)
- Marek Grabowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Joanna M. Macnar
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Miroslaw Gilski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dariusz Brzezinski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland, USA
| | - Bernhard Rupp
- k.-k Hofkristallamt, San Diego, California, USA
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Helliwell JR. Combining X-rays, neutrons and electrons, and NMR, for precision and accuracy in structure-function studies. Acta Crystallogr A Found Adv 2021; 77:173-185. [PMID: 33944796 PMCID: PMC8127390 DOI: 10.1107/s205327332100317x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
The distinctive features of the physics-based probes used in understanding the structure of matter focusing on biological sciences, but not exclusively, are described in the modern context. This is set in a wider scope of holistic biology and the scepticism about `reductionism', what is called the `molecular level', and how to respond constructively. These topics will be set alongside the principles of accuracy and precision, and their boundaries. The combination of probes and their application together is the usual way of realizing accuracy. The distinction between precision and accuracy can be blurred by the predictive force of a precise structure, thereby lending confidence in its potential accuracy. These descriptions will be applied to the comparison of cryo and room-temperature protein crystal structures as well as the solid state of a crystal and the same molecules studied by small-angle X-ray scattering in solution and by electron microscopy on a sample grid. Examples will include: time-resolved X-ray Laue crystallography of an enzyme Michaelis complex formed directly in a crystal equivalent to in vivo; a new iodoplatin for radiation therapy predicted from studies of platin crystal structures; and the field of colouration of carotenoids, as an effective assay of function, i.e. their colouration, when unbound and bound to a protein. The complementarity of probes, as well as their combinatory use, is then at the foundation of real (biologically relevant), probe-artefacts-free, structure-function studies. The foundations of our methodologies are being transformed by colossal improvements in technologies of X-ray and neutron sources and their beamline instruments, as well as improved electron microscopes and NMR spectrometers. The success of protein structure prediction from gene sequence recently reported by CASP14 also opens new doors to change and extend the foundations of the structural sciences.
Collapse
Affiliation(s)
- John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|