1
|
Silva R, Dos Santos CAAS, da Silva Filho JG, Leite FF, Paraguassu W, Freire PTC, Façanha Filho PF. L-tyrosine methyl ester hydrochloride crystal under high pressure and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125449. [PMID: 39579732 DOI: 10.1016/j.saa.2024.125449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
The methylated organic salt L-tyrosine methyl ester hydrochloride (LTMEHCl) crystal was synthesized by the slow solvent evaporation method. The crystal structure was verified through Powder X-ray Diffraction. Three-dimensional periodic Density Functional Theory calculations (DFT) were conducted to identify the Raman active modes. A high-pressure Raman study was carried out on this material, encompassing a wavenumber range of 50-3450 cm-1 and a pressure range from 0.0 to 9.0 GPa. Spectral modifications, including wavenumber discontinuities, the emergence and disappearance, broadening and attenuation, as well as the inversion of relative intensities in specific bands associated with both external and internal modes, were observed. These observations indicate a conformational phase transition in LTMEHCl crystal around 1.0 GPa, followed by a second phase transition near 6.0 GPa, which correlates with anincrease in structural disorder. The methylation process likely led to a reduction in hydrogen bond formation ability and an increase in the mobility of the methylated L-tyrosine under high pressure. Consequently, L-tyrosine methyl ester hydrochloride exhibited greater susceptibility to conformational modifications than its non-methylated analogue, L-tyrosine hydrochloride. Furthermore, upon the release of pressure, several bands either reappeared weakly or did not reappear. This behavior suggests a partial amorphization of the material, potentially influenced by the mineral oil medium and its hydrostatic limit.
Collapse
Affiliation(s)
- R Silva
- Centro de Ciências de Imperatriz, CCIM, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - C A A S Dos Santos
- Centro de Ciências de Imperatriz, CCIM, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - J G da Silva Filho
- Faculdade de Educação Ciências e Letras do Sertão Central, Universidade Estadual do Ceará, Quixadá CE, 63902-098, Brazil
| | - F F Leite
- Departamento de Ciências Exatas e Tecnológicas, Universidade Federal do Amapá, Macapá, AP 68903-419, Brazil; Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - W Paraguassu
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - P T C Freire
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE 60455-760, Brazil
| | - P F Façanha Filho
- Centro de Ciências de Imperatriz, CCIM, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil.
| |
Collapse
|
2
|
Gasol‐Cardona J, Ward MR, Gutowski O, Drnec J, Jandl C, Stam D, Maloney AGP, Markl D, Price SWT, Oswald IDH. Spatial and Temporal Visualization of Polymorphic Transformations in Pharmaceutical Tablets. Angew Chem Int Ed Engl 2025; 64:e202412976. [PMID: 39545584 PMCID: PMC11720378 DOI: 10.1002/anie.202412976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/17/2024]
Abstract
X-ray Diffraction Computed Tomography (XRD-CT) represents a cutting-edge method for non-destructive material analysis, offering the unique capability of providing molecular-level information with spatial resolution. In this study, we have applied XRD-CT to investigate pharmaceutically relevant tablets that have been subjected to a range of compression pressures typical in tablet manufacturing. By employing XRD-CT to pharmaceutical tablets, we reveal material changes without tablet destruction, thereby avoiding potential phase transformations during sample preparation that could lead to errors in the interpretation of the processes that have occurred. Utilizing a pressure-sensitive marker, glycolide, we have tracked changes within tablet structures induced by compression, pinpointing locations where glycolide undergoes pressure-induced transformation. Additionally, we conducted a follow-up study with analysis one month later, observing an in situ hydrolysis reaction of glycolide within the tablets. Through the complementary use of electron diffraction, we have elucidated the structure of the hydrolysis product, further enhancing our understanding of temporal changes in the tablets.
Collapse
Affiliation(s)
- Julia Gasol‐Cardona
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde161 Cathedral StreetGlasgowG4 0REUnited Kingdom
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC)University of Strathclyde99 George StreetGlasgowG1 1RDUnited Kingdom
| | - Martin R. Ward
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde161 Cathedral StreetGlasgowG4 0REUnited Kingdom
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC)University of Strathclyde99 George StreetGlasgowG1 1RDUnited Kingdom
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESYNotkestraße 8522607HamburgGermany
| | - Jakub Drnec
- European Synchrotron Radiation Facility71 Avenue des Martyrs38000GrenobleFrance
| | - Christian Jandl
- ELDICO Scientific AGSwitzerland Innovation Park Basel AreaHegenheimermattweg 167 A4123AllschwilSwitzerland
| | - Danny Stam
- ELDICO Scientific AGSwitzerland Innovation Park Basel AreaHegenheimermattweg 167 A4123AllschwilSwitzerland
| | - Andrew G. P. Maloney
- The Cambridge Crystallographic Data Centre12 Union RoadCambridgeCB2 1EZUnited Kingdom
| | - Daniel Markl
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde161 Cathedral StreetGlasgowG4 0REUnited Kingdom
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC)University of Strathclyde99 George StreetGlasgowG1 1RDUnited Kingdom
| | - Stephen W. T. Price
- Finden LimitedMerchant House, 5 East St Helens StreetAbingdonOX14 5EGUnited Kingdom
| | - Iain D. H. Oswald
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde161 Cathedral StreetGlasgowG4 0REUnited Kingdom
| |
Collapse
|
3
|
de Moura GM, Lage MR, Santos A, Gester R, Stoyanov SR, Andrade-Filho T. A DFT study of the effect of hydrostatic pressure on the structure and electronic properties of sarcosine crystal. J Mol Model 2024; 30:368. [PMID: 39365492 PMCID: PMC11452461 DOI: 10.1007/s00894-024-06110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
CONTEXT We perform density functional theory calculations to study the dependence of the structural and electronic properties of the amino acid sarcosine crystal structure on hydrostatic pressure application. The results are analyzed and compared with the available experimental data. Our findings indicate that the crystal structure and properties of sarcosine calculated using the Grimme dispersion-corrected PBE functional (PBE-D3) best agree with the available experimental results under hydrostatic pressure of up to 3.7 GPa. Critical structural rearrangements, such as unit cell compression, head-to-tail compression, and molecular rotations, are investigated and elucidated in the context of experimental findings. Band gap energy tuning and density of state shifts indicative of band dispersion are presented concerning the structural changes arising from the elevated pressure. The calculated properties indicate that sarcosine holds great promise for application in electronic devices that involve pressure-induced structural changes. METHODS Three widely used generalized gradient approximation functionals-PBE, PBEsol, and revPBE-are employed with Grimme's D3 dispersion correction. The non-local van der Waals density functional vdW-DF is also evaluated. The calculations are performed using the projector-augmented wave method in the Quantum Espresso software suite. The geometry optimization results are visualized using VMD. The Multiwfn and NCIPlot programs are used for wavefunction and intermolecular interaction analyses.
Collapse
Affiliation(s)
- Geanso M de Moura
- Programa de Pós-Graduação em Ciências do Materiais, Universidade Federal do Maranhão, Imperatriz, Maranhão, Brazil
- Instituto Federal do Pará, IFPA, Campus Marabá Industrial-Pará, Marabá, Brazil
| | - Mateus R Lage
- Curso de Ciência e Tecnologia, Universidade Federal do Maranhão, 65800-000, Balsas, MA, Brazil
| | - Adenilson Santos
- Centro de Ciências Sociais Saúde e Tecnologia (CCSST), Universidade Federal do Maranhão - UFMA, R. Urbano Santos, s/n, Imperatriz, MA, 65900-410, Brazil
| | - Rodrigo Gester
- Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, 68507-590, Brazil
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada.
| | - Tarciso Andrade-Filho
- Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, 68507-590, Brazil
| |
Collapse
|
4
|
Ajithkumar V, Arunkumar M, Philomina A, Sakthi Vignesh N, Vimali E, Dey D, Ganesh Moorthy IM, Ashokkumar B, Varalakshmi P. Deciphering Bisphenol A degradation by Coelastrella sp. M60: unravelling metabolic insights through metabolomics analysis. BIORESOURCE TECHNOLOGY 2024; 401:130701. [PMID: 38621609 DOI: 10.1016/j.biortech.2024.130701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Microalgae, owing to their efficacy and eco-friendliness, have emerged as a promising solution for mitigating the toxicity of Bisphenol A (BPA), a hazardous environmental pollutant. This current study was focused on the degradation of BPA by Coelastrella sp. M60 at various concentrations (10-50 mg/L). Further, the metabolic profiling of Coelastrella sp. M60 was performed using GC-MS analysis, and the results were revealed that BPA exposure modulated the metabolites profile with the presence of intermediates of BPA. In addition, highest lipid (43%) and pigment content (40%) at 20 and 10 mg/L of BPA respectively exposed to Coelastrella sp. M60 was achieved and enhanced fatty acid methyl esters recovery was facilitated by Cuprous oxide nanoparticles synthesised using Spatoglossum asperum. Thus, this study persuades thepotential of Coelastrella sp. M60 for BPA degradation and suggesting new avenues to remove the emerging contaminants in polluted water bodies and targeted metabolite expression in microalgae.
Collapse
Affiliation(s)
- Velmurugan Ajithkumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Appaiyan Philomina
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Elamathi Vimali
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Drishanu Dey
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
5
|
Bhojane PP, Joshi S, Sahoo SJ, Rathore AS. Unexplored Excipients in Biotherapeutic Formulations: Natural Osmolytes as Potential Stabilizers Against Thermally Induced Aggregation of IgG1 Biotherapeutics. AAPS PharmSciTech 2021; 23:26. [PMID: 34907498 PMCID: PMC8670780 DOI: 10.1208/s12249-021-02183-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
Monoclonal antibodies (mAbs), while incredibly successful, are prone to a variety of degradation pathways, the most significant of which is aggregation. One of the most commonly used strategy to overcome protein aggregation is addition of excipients to the formulation. Osmolytes such as trehalose, sucrose, and glycine are widely used. In this paper, we explore potential use of naturally occurring osmolytes such as betaine, sarcosine, ectoine, and hydroxyectoine for reducing aggregation of mAb therapeutics. Experimentation has been performed on two IgG1 mAbs via accelerated stability studies. A variety of analytical tools have been used for monitoring the impact, dynamic light scattering (DLS) for colloidal stability, Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy for conformational stability and the higher order structure (HOS), and differential scanning calorimetry (DSC) for thermal stability. No significant impact of osmolyte addition was observed on protein structure, on comparative Fc receptor (FcRn) binding, and on biocompatibility as per our hemolytic assay. Our results rank the osmolytes’ stabilizing trend to be sarcosine > betaine > hydroxyectoine > ectoine. Sarcosine emerged as the most successful osmolyte rendering highest degree of protection against aggregation. Our data support the prospect of using these osmolytes as successful excipients for mAb formulations.
Collapse
|
6
|
Duan H, Wang W, Li Y, Jilany Khan G, Chen Y, Shen T, Bao N, Hua J, Xue Z, Zhai K, Wei Z. Identification of phytochemicals and antioxidant activity of Premna microphylla Turcz. stem through UPLC-LTQ-Orbitrap-MS. Food Chem 2021; 373:131482. [PMID: 34731817 DOI: 10.1016/j.foodchem.2021.131482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Accepted: 10/24/2021] [Indexed: 12/17/2022]
Abstract
Premna microphylla Turcz. is a commonly used traditional Chinese medicine totreatdysentery and appendicitis. Present study is focused to explore antioxidants and other compounds in the Premna microphylla Turcz. stem. Assessment of chemical composition was done with high sensitivity UPLC-LTQ-Orbitrap-MS and for Separation Thermo Hypersil Gold (100 mm × 2.1 mm, 1.9 µm) was used while electrospray ionization (ESI) was used for the mass spectrometry. 18 compounds were identified including Vitexin (1), Schaftoside (2), Vicenin-2 (3), Apigenin-6, 8-di-C-arabinoside (4), Apigenin-7-O-β-d-glucoside (5), Carnosic acid (6), Apigenin-8-C-β-d-xylopyranoside (7), Prostratin (8), Aurantio-obtusin-β-d-glucoside (9), Royleanone (10), 5-hydroxy-7,3',4'-Trimethoxy flavonols (11), 6-Hydroxy-5,6-dehydrosugiol (12), 14-deoxycoleon (13), Arucadiol (14), Obtusinone-B (15), Trehalose (16), Citric acid (17) and Betaine (18). Among these, 6 compounds including (6), (8), (9), (16), (17) and (18) were identified first time within this genus and plant. Study highlights the importance of Premna microphylla Turcz. stem extract for strong therapeutic potential against oxidation-related diseases.
Collapse
Affiliation(s)
- Hong Duan
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Wei Wang
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China; School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Yongxiang Li
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Ghulam Jilany Khan
- Department of Pharmacology, Faculty of Pharmacy (FOP), University of Central Punjab, Lahore, Pakistan; National Drug Screening Center of Pharmacokinetics and Pharmacodynamics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Yuan Chen
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China; School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Tianci Shen
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Nina Bao
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Jing Hua
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin 541004, PR China
| | - Zhenglian Xue
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Kefeng Zhai
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biological and Food Engineering, Suzhou University, Suzhou 234000, PR China; School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China; Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin 541004, PR China.
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
7
|
Bhattacharyya S, Sobczak S, Półrolniczak A, Roy S, Samanta D, Katrusiak A, Maji TK. Dynamic Resolution of Piezosensitivity in Single Crystals of π‐Conjugated Molecules. Chemistry 2019; 25:6092-6097. [DOI: 10.1002/chem.201900054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/27/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Sohini Bhattacharyya
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Szymon Sobczak
- Faculty of ChemistryAdam Mickiewicz University Umultowska 89b 61-614 Poznań Poland
| | | | - Syamantak Roy
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Debabrata Samanta
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Andrzej Katrusiak
- Faculty of ChemistryAdam Mickiewicz University Umultowska 89b 61-614 Poznań Poland
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| |
Collapse
|
8
|
Resnati G, Boldyreva E, Bombicz P, Kawano M. Supramolecular interactions in the solid state. IUCRJ 2015; 2:675-90. [PMID: 26594375 PMCID: PMC4645112 DOI: 10.1107/s2052252515014608] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/03/2015] [Indexed: 06/02/2023]
Abstract
In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1) an overview and historical review of halogen bonding; (2) exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3) the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4) strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.
Collapse
Affiliation(s)
- Giuseppe Resnati
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, 7, via Mancinelli, Milan, Lombardy I-20131, Italy
| | - Elena Boldyreva
- Institute of Solid State Chemistry, Russian Academy of Sciences, ul. Kutateladze 18, Novosibirsk 128, Russian Federation
- Novosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russian Federation
| | - Petra Bombicz
- Research Group of Chemical Crystallography, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, POB 286, Budapest H-1117, Hungary
| | - Masaki Kawano
- Division of Advanced Materials Science, Pohang University of Science and Technonlogy, 77 Cheongam-Ro Nam-Gu, Pohang 790-784, South Korea
| |
Collapse
|
9
|
Hejny C, Minkov VS. High-pressure crystallography of periodic and aperiodic crystals. IUCRJ 2015; 2:218-29. [PMID: 25866659 PMCID: PMC4392772 DOI: 10.1107/s2052252514025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/20/2014] [Indexed: 06/02/2023]
Abstract
More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal-organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium 'High-Pressure Crystallography of Periodic and Aperiodic Crystals' presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader's interest in this topic.
Collapse
Affiliation(s)
- Clivia Hejny
- Mineralogy and Petrography, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
| | - Vasily S. Minkov
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, 18 Kutateladze Street, Novosibirsk 630128, Russian Federation
- Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russian Federation
| |
Collapse
|
10
|
Kapustin EA, Minkov VS, Boldyreva EV. Sarcosine and betaine crystals upon cooling: structural motifs unstable at high pressure become stable at low temperatures. Phys Chem Chem Phys 2015; 17:3534-43. [PMID: 25536150 DOI: 10.1039/c4cp05094k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structures of N-methyl derivatives of the simplest amino acid glycine, namely sarcosine (C3H7NO2) and betaine (C5H11NO2), were studied upon cooling by single-crystal X-ray diffraction and single-crystal polarized Raman spectroscopy. The effects of decreasing temperature and increasing hydrostatic pressure on the crystal structures were compared. In particular, we have studied the behavior upon cooling of those structural motifs in the crystals, which are involved in structural rearrangement during pressure-induced phase transitions. In contrast to their high sensitivity to hydrostatic compression, the crystals of both sarcosine and betaine are stable to cooling down to 5 K. Similarly to most α-amino acids, the crystal structures of the two compounds are most rigid upon cooling in the direction of the main structural motif, namely head-to-tail chains (linked via the strongest N-H···O hydrogen bonds and dipole-dipole interactions in the case of sarcosine, or exclusively by dipole-dipole interactions in the case of betaine). The anisotropy of linear strain in betaine does not differ much upon cooling and on hydrostatic compression, whereas this is not the case for sarcosine. Although the interactions between certain structural motifs in sarcosine and betaine weaken as a result of phase transitions induced by pressure, the same interactions strengthen when volume reduction results from cooling.
Collapse
Affiliation(s)
- E A Kapustin
- Novosibirsk State University, Pirogov street, 2, Novosibirsk 630090, Russian Federation.
| | | | | |
Collapse
|