Shao ZC, Meng XR, Hou HW. Two new Cd
II and Zn
II coordination polymers incorporating 1-aminobenzene-3,4,5-tricarboxylic acid: synthesis, crystal structure and characterization.
ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019;
75:1065-1072. [PMID:
31380789 DOI:
10.1107/s2053229619009227]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 11/10/2022]
Abstract
Aminobenzoic acid derivatives are widely used in the preparation of new coordination polymers since they contain O-atom donors, as well as N-atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. Two new coordination polymers incorporating 1-aminobenzene-3,4,5-tricarboxylic acid (H3abtc), namely, poly[(μ3-1-amino-5-carboxybenzene-3,4-dicarboxylato)diaquacadmium(II)], [Cd(C9H5NO6)(H2O)2]n, (I), and poly[[bis(μ5-1-aminobenzene-3,4,5-tricarboxylato)triaquatrizinc(II)] dihydrate], {[Zn3(C9H4NO6)2(H2O)3]·2H2O}n, (II), have been prepared and structurally characterized by single-crystal X-ray diffraction. In polymer (I), each tridentate 1-amino-5-carboxybenzene-3,4-dicarboxylate (Habtc2-) ligand coordinates to three CdII ions to form a two-dimensional network structure, in which all of the CdII ions and Habtc2- ligands are equivalent, respectively. Polymer (II) also exhibits a two-dimensional network structure, in which three crystallographically independent ZnII ions are bridged by two crystallographically independent pentadentate 1-aminobenzene-3,4,5-tricarboxylate (abtc3-) ligands. This indicates that changing the metal ion can influence the coordination mode of the H3abtc-derived ligand and further influence the detailed architecture of the polymer. Moreover, the IR spectra, thermogravimetric analyses and fluorescence properties were investigated.
Collapse