1
|
Kim Y, Ryu BH, Kim J, Yoo W, An DR, Kim BY, Kwon S, Lee S, Wang Y, Kim KK, Kim TD. Characterization of a novel SGNH-type esterase from Lactobacillus plantarum. Int J Biol Macromol 2016; 96:560-568. [PMID: 28040493 DOI: 10.1016/j.ijbiomac.2016.12.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Lactic acid bacteria (LAB) are sources of a large variety of microbial ester hydrolases because they can produce a wide range of short-chain esters, phenolic alcohols, and fatty acids. Here, a novel SGNH-type esterase (LpSGNH1) from Lactobacillus plantarum WCFS1 was identified, functionally characterized, and immobilized for biotechnological applications. Homologs of LpSGNH1 are also found in many lactic acid bacteria (LAB) species. Biochemical features of LpSGNH1 were investigated using mass spectrometry, gel filtration chromatography, enzyme kinetics, fluorescence, and circular dichroism (CD) spectroscopy. LpSGNH1 were retained its activity under conditions that would be encountered during fermentations. Interestingly, LpSGNH1 exhibited the ability to act on a broad range of substrates including ketoprofen acetate, cefotaxime (CTX), and 7-aminocephalosporanic acid (7-ACA) as well as glucose pentaacetate, acetylxylan, and acetylalginate, which make LpSGNH1 a great candidate for extensive industrial applications. Furthermore, cross-linked enzyme aggregates of LpSGNH1 (CLEA-LpSGNH1) displayed recycling ability and thermal stability compared to free LpSGNH1, which could be useful for industrial applications. This work highlights the importance of LpSGNH1 in the preparation of commercial compounds, and LpSGNH1 can be used as a model system of SGNH esterases in lactic acid bacteria.
Collapse
Affiliation(s)
- Yonggyu Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Bum Han Ryu
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Jimin Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Deu Rae An
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Boo-Young Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sena Kwon
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Sojeong Lee
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, South Korea.
| |
Collapse
|
2
|
Oh C, Ryu BH, An DR, Nguyen DD, Yoo W, Kim T, Ngo TD, Kim HS, Kim KK, Kim TD. Structural and Biochemical Characterization of an Octameric Carbohydrate Acetylesterase from Sinorhizobium meliloti. FEBS Lett 2016; 590:1242-52. [PMID: 26991446 DOI: 10.1002/1873-3468.12135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 11/06/2022]
Abstract
Carbohydrate acetylesterases, which have a highly specific role among plant-interacting bacterial species, remove the acetyl groups from plant carbohydrates. Here, we determined the crystal structure of Est24, an octameric carbohydrate acetylesterase from Sinorhizobium meliloti, at 1.45 Å resolution and investigated its biochemical properties. The structure of Est24 consisted of five parallel β strands flanked by α helices, which formed an octameric assembly with two distinct interfaces. The deacetylation activity of Est24 and its mutants around the substrate-binding pocket was investigated using several substrates, including glucose pentaacetate and acetyl alginate. Elucidation of the structure-function relationships of Est24 could provide valuable opportunities for biotechnological explorations.
Collapse
Affiliation(s)
- Changsuk Oh
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Bum Han Ryu
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Chemistry, College of Natural Sciences, Sookmyung Woman's University, Seoul, Korea
| | - Deu Rae An
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Chemistry, College of Natural Sciences, Sookmyung Woman's University, Seoul, Korea
| | - Duy Duc Nguyen
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Wanki Yoo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Chemistry, College of Natural Sciences, Sookmyung Woman's University, Seoul, Korea
| | - Truc Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hee Sook Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Sciences, Sookmyung Woman's University, Seoul, Korea
| |
Collapse
|