1
|
Amin M, Brooks BR. The oxidation of the [4Fe-4S] cluster of DNA primase alters the binding energies with DNA and RNA primers. Biophys J 2024; 123:1648-1653. [PMID: 38733082 PMCID: PMC11213986 DOI: 10.1016/j.bpj.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
DNA primase is an iron sulfur enzyme in DNA replication responsible for synthesizing short RNA primers that serve as starting points for DNA synthesis. The role of the [4Fe-4S] cluster is not well determined. Here, we calculate the redox potential of the [4Fe-4S] with and without DNA/RNA using continuum electrostatics. In addition, we identify the structural changes coupled to the oxidation/reduction. Our calculations show that the DNA/RNA primer lowers the redox potential by 110 and 50 mV for the [4Fe-4S]+ and [4Fe-4S]2+ states, respectively. The oxidation of the cluster is coupled to structural changes that significantly reduce the binding energies between the DNA and the nearby residues. The negative charges accumulated by the DNA and the RNA primers induce the oxidation of the [4Fe-4S] cluster. This in turn stimulates structural changes on the DNA-protein interface that significantly reduce the binding energies.
Collapse
Affiliation(s)
- Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
He Q, Baranovskiy AG, Morstadt LM, Lisova AE, Babayeva ND, Lusk BL, Lim CJ, Tahirov TH. Structures of human primosome elongation complexes. Nat Struct Mol Biol 2023; 30:579-583. [PMID: 37069376 PMCID: PMC10268227 DOI: 10.1038/s41594-023-00971-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
The synthesis of RNA-DNA primer by primosome requires coordination between primase and DNA polymerase α subunits, which is accompanied by unknown architectural rearrangements of multiple domains. Using cryogenic electron microscopy, we solved a 3.6 Å human primosome structure caught at an early stage of RNA primer elongation with deoxynucleotides. The structure confirms a long-standing role of primase large subunit and reveals new insights into how primosome is limited to synthesizing short RNA-DNA primers.
Collapse
Affiliation(s)
- Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lucia M Morstadt
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alisa E Lisova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin L Lusk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Baranovskiy AG, Lisova AE, Morstadt LM, Babayeva ND, Tahirov TH. Insight into RNA-DNA primer length counting by human primosome. Nucleic Acids Res 2022; 50:6264-6270. [PMID: 35689638 PMCID: PMC9226528 DOI: 10.1093/nar/gkac492] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
The human primosome, a four-subunit complex of primase and DNA polymerase alpha (Polα), synthesizes chimeric RNA–DNA primers of a limited length for DNA polymerases delta and epsilon to initiate DNA replication on both chromosome strands. Despite recent structural insights into the action of its two catalytic centers, the mechanism of DNA synthesis termination is still unclear. Here we report results of functional and structural studies revealing how the human primosome counts RNA–DNA primer length and timely terminates DNA elongation. Using a single-turnover primer extension assay, we defined two factors that determine a mature primer length (∼35-mer): (i) a tight interaction of the C-terminal domain of the DNA primase large subunit (p58C) with the primer 5′-end, and (ii) flexible tethering of p58C and the DNA polymerase alpha catalytic core domain (p180core) to the primosome platform domain by extended linkers. The obtained data allow us to conclude that p58C is a key regulator of all steps of RNA–DNA primer synthesis. The above-described findings provide a notable insight into the mechanism of DNA synthesis termination by a eukaryotic primosome, an important process for ensuring successful primer handover to replication DNA polymerases and for maintaining genome integrity.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| | - Alisa E Lisova
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| | - Lucia M Morstadt
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center. University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Baranovskiy AG, Babayeva ND, Zhang Y, Gu J, Suwa Y, Pavlov YI, Tahirov TH. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome. J Biol Chem 2016; 291:10006-20. [PMID: 26975377 DOI: 10.1074/jbc.m116.717405] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 12/31/2022] Open
Abstract
The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Nigar D Babayeva
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and the Departments of Biochemistry and Molecular Biology and
| | - Jianyou Gu
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Yoshiaki Suwa
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and the Departments of Biochemistry and Molecular Biology and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center and
| |
Collapse
|
5
|
Baranovskiy AG, Zhang Y, Suwa Y, Gu J, Babayeva ND, Pavlov YI, Tahirov TH. Insight into the Human DNA Primase Interaction with Template-Primer. J Biol Chem 2015; 291:4793-802. [PMID: 26710848 DOI: 10.1074/jbc.m115.704064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
DNA replication in almost all organisms depends on the activity of DNA primase, a DNA-dependent RNA polymerase that synthesizes short RNA primers of defined size for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for the activity. The mode of interaction of primase subunits with substrates during the various steps of primer synthesis that results in the counting of primer length is not clear. Here we show that the C-terminal domain of the large subunit (p58C) plays a major role in template-primer binding and also defines the elements of the DNA template and the RNA primer that interact with p58C. The specific mode of interaction with a template-primer involving the terminal 5'-triphosphate of RNA and the 3'-overhang of DNA results in a stable complex between p58C and the DNA/RNA duplex. Our results explain how p58C participates in RNA synthesis and primer length counting and also indicate that the binding site for initiating NTP is located on p58C. These findings provide notable insight into the mechanism of primase function and are applicable for DNA primases from other species.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center
| | - Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, and
| | - Yoshiaki Suwa
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center
| | - Jianyou Gu
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center
| | - Nigar D Babayeva
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center,
| |
Collapse
|
6
|
Baranovskiy AG, Zhang Y, Suwa Y, Babayeva ND, Gu J, Pavlov YI, Tahirov TH. Crystal structure of the human primase. J Biol Chem 2014; 290:5635-46. [PMID: 25550159 DOI: 10.1074/jbc.m114.624742] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA replication in bacteria and eukaryotes requires the activity of DNA primase, a DNA-dependent RNA polymerase that lays short RNA primers for DNA polymerases. Eukaryotic and archaeal primases are heterodimers consisting of small catalytic and large accessory subunits, both of which are necessary for RNA primer synthesis. Understanding of RNA synthesis priming in eukaryotes is currently limited due to the lack of crystal structures of the full-length primase and its complexes with substrates in initiation and elongation states. Here we report the crystal structure of the full-length human primase, revealing the precise overall organization of the enzyme, the relative positions of its functional domains, and the mode of its interaction with modeled DNA and RNA. The structure indicates that the dramatic conformational changes in primase are necessary to accomplish the initiation and then elongation of RNA synthesis. The presence of a long linker between the N- and C-terminal domains of p58 provides the structural basis for the bulk of enzyme's conformational flexibility. Deletion of most of this linker affected the initiation and elongation steps of the primer synthesis.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, and
| | - Yoshiaki Suwa
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Nigar D Babayeva
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jianyou Gu
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, and the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198,
| |
Collapse
|
7
|
Zhang Y, Baranovskiy AG, Tahirov TH, Pavlov YI. The C-terminal domain of the DNA polymerase catalytic subunit regulates the primase and polymerase activities of the human DNA polymerase α-primase complex. J Biol Chem 2014; 289:22021-34. [PMID: 24962573 DOI: 10.1074/jbc.m114.570333] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The initiation of DNA synthesis during replication of the human genome is accomplished primarily by the DNA polymerase α-primase complex, which makes the RNA-DNA primers accessible to processive DNA pols. The structural information needed to understand the mechanism of regulation of this complex biochemical reaction is incomplete. The presence of two enzymes in one complex poses the question of how these two enzymes cooperate during priming of DNA synthesis. Yeast two-hybrid and direct pulldown assays revealed that the N-terminal domain of the large subunit of primase (p58N) directly interacts with the C-terminal domain of the catalytic subunit of polα (p180C). We found that a complex of the C-terminal domain of the catalytic subunit of polα with the second subunit (p180C-p70) stimulated primase activity, whereas the whole catalytically active heterodimer of polα (p180ΔN-p70) inhibited RNA synthesis by primase. Conversely, the polα catalytic domain without the C-terminal part (p180ΔN-core) possessed a much higher propensity to extend the RNA primer than the two-subunit polα (p180ΔN-p70), suggesting that p180C and/or p70 are involved in the negative regulation of DNA pol activity. We conclude that the interaction between p180C, p70, and p58 regulates the proper primase and polymerase function. The composition of the template DNA is another important factor determining the activity of the complex. We have found that polα activity strongly depends on the sequence of the template and that homopyrimidine runs create a strong barrier for DNA synthesis by polα.
Collapse
Affiliation(s)
- Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and
| | | | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases,
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805
| |
Collapse
|