Sun J, Siroy A, Lokareddy RK, Speer A, Doornbos KS, Cingolani G, Niederweis M. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD.
Nat Struct Mol Biol 2015;
22:672-8. [PMID:
26237511 PMCID:
PMC4560639 DOI:
10.1038/nsmb.3064]
[Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) induces necrosis of infected cells to evade immune responses. Recently, we found that Mtb uses the protein CpnT to kill human macrophages by secreting its C-terminal domain, named tuberculosis necrotizing toxin (TNT), which induces necrosis by an unknown mechanism. Here we show that TNT gains access to the cytosol of Mtb-infected macrophages, where it hydrolyzes the essential coenzyme NAD(+). Expression or injection of a noncatalytic TNT mutant showed no cytotoxicity in macrophages or in zebrafish zygotes, respectively, thus demonstrating that the NAD(+) glycohydrolase activity is required for TNT-induced cell death. To prevent self-poisoning, Mtb produces an immunity factor for TNT (IFT) that binds TNT and inhibits its activity. The crystal structure of the TNT-IFT complex revealed a new NAD(+) glycohydrolase fold of TNT, the founding member of a toxin family widespread in pathogenic microorganisms.
Collapse