1
|
Gonzalez Solveyra E, Perez Sirkin YA, Tagliazucchi M, Szleifer I. Orientational Pathways during Protein Translocation through Polymer-Modified Nanopores. ACS NANO 2024; 18:10427-10438. [PMID: 38556978 DOI: 10.1021/acsnano.3c11318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein translocation through nanopores holds significant promise for applications in biotechnology, biomolecular analysis, and medicine. However, the interpretation of signals generated by the translocation of the protein remains challenging. In this way, it is crucial to gain a comprehensive understanding on how macromolecules translocate through a nanopore and to identify what are the critical parameters that govern the process. In this study, we investigate the interplay between protein charge regulation, orientation, and nanopore surface modifications using a theoretical framework that allows us to explicitly take into account the acid-base reactions of the titrable amino acids in the proteins and in the polyelectrolytes grafted to the nanopore surface. Our goal is to thoroughly characterize the translocation process of different proteins (GFP, β-lactoglobulin, lysozyme, and RNase) through nanopores modified with weak polyacids. Our calculations show that the charge regulation mechanism exerts a profound effect on the translocation process. The pH-dependent interactions between proteins and charged polymers within the nanopore lead to diverse free energy landscapes with barriers, wells, and flat regions dictating translocation efficiency. Comparison of different proteins allows us to identify the significance of protein isoelectric point, size, and morphology in the translocation behavior. Taking advantage of these insights, we propose pH-responsive nanopores that can load proteins at one pH and release them at another, offering opportunities for controlled protein delivery, separation, and sensing applications.
Collapse
Affiliation(s)
- Estefania Gonzalez Solveyra
- Instituto de Nanosistemas, Universidad Nacional de San Martín-CONICET, San Martín, Buenos Aires B1650, Argentina
| | - Yamila A Perez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE). Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE). Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Sawyer L. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front Physiol 2021; 12:678080. [PMID: 34093238 PMCID: PMC8173191 DOI: 10.3389/fphys.2021.678080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
The two lipocalins, β-lactoglobulin (βLg) and glycodelin (Gd), are possibly the most closely related members of the large and widely distributed lipocalin family, yet their functions appear to be substantially different. Indeed, the function of β-lactoglobulin, a major component of ruminant milk, is still unclear although neonatal nutrition is clearly important. On the other hand, glycodelin has several specific functions in reproduction conferred through distinct, tissue specific glycosylation of the polypeptide backbone. It is also associated with some cancer outcomes. The glycodelin gene, PAEP, reflecting one of its names, progestagen-associated endometrial protein, is expressed in many though not all primates, but the name has now also been adopted for the β-lactoglobulin gene (HGNC, www.genenames.org). After a general overview of the two proteins in the context of the lipocalin family, this review considers the properties of each in the light of their physiological functional significance, supplementing earlier reviews to include studies from the past decade. While the biological function of glycodelin is reasonably well defined, that of β-lactoglobulin remains elusive.
Collapse
Affiliation(s)
- Lindsay Sawyer
- School of Biological Sciences, IQB3, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Gochev GG, Scoppola E, Campbell RA, Noskov BA, Miller R, Schneck E. β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 3. Neutron Reflectometry Study on the Effect of pH. J Phys Chem B 2019; 123:10877-10889. [PMID: 31725291 DOI: 10.1021/acs.jpcb.9b07733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Several characteristics of β-lactoglobulin (BLG) layers adsorbed at the air/water interface exhibit a strong pH dependence, but our knowledge on the underlying structure-property relations is still fragmental. Here, we therefore extend our recent studies by neutron reflectometry (NR) and provide a comprehensive overview through direct measurements of the surface excess Γ and the layers' molecular structure. This enables comparison with available literature data to draw general conclusions. The NR experiments were performed at various pH values and within a wide range of protein concentrations, CBLG. Adsorption kinetics measurements in air-contrast-matched-water and over a narrow Qz range enabled direct quantification of the dynamic surface excess Γ(t) and are found to be consistent with ellipsometry data. Near the isoelectric point, pI, the rates of adsorption and Γ are maximal but only at sufficiently high CBLG. NR data collected over a wider Qz range and in two aqueous isotopic contrasts revealed the structure of adsorbed BLG layers at a steady state close to equilibrium. Independent of the pH, BLG was found to form dense monolayers with average thicknesses of 1.1 nm, suggesting flattening of the BLG globules upon adsorption as compared with their bulk dimensions (≈3.5 nm). Near pI and at sufficiently high CBLG, a thick (≈5.5 nm) but looser secondary sublayer is additionally formed adjacent to the dense primary monolayer. The thickness of this sublayer can be interpreted in terms of disordered BLG dimers. The results obtained and notably the specific interfacial structuring of BLG near pI complement previous observations relating the impact of solution pH and CBLG on other interfacial characteristics such as surface pressure and surface dilational viscoelasticity modulus.
Collapse
Affiliation(s)
- Georgi G Gochev
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany.,Institute of Physical Chemistry , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Ernesto Scoppola
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| | - Richard A Campbell
- Institut Laue-Langevin , 71 Avenue des Martyrs, CS20156 , 38042 Grenoble , France.,Division of Pharmacy and Optometry , University of Manchester , M13 9PT Manchester , U.K
| | - Boris A Noskov
- Institute of Chemistry , St. Petersburg State University , 198504 Saint-Petersburg , Russia
| | - Reinhard Miller
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| |
Collapse
|
4
|
Boubeta FM, Soler-Illia GJAA, Tagliazucchi M. Electrostatically Driven Protein Adsorption: Charge Patches versus Charge Regulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15727-15738. [PMID: 30451508 DOI: 10.1021/acs.langmuir.8b03411] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanisms of electrostatically driven adsorption of proteins on charged surfaces are studied with a new theoretical framework. The acid-base behavior, charge distribution, and electrostatic contributions to the thermodynamic properties of the proteins are modeled in the presence of a charged surface. The method is validated against experimental titration curves and apparent p Kas. The theory predicts that electrostatic interactions favor the adsorption of proteins at their isoelectric points on charged surfaces despite the fact that the protein has no net charge in solution. Two known mechanisms explain adsorption under these conditions: (i) charge regulation (the charge of the protein changes due to the presence of the surface) and (ii) charge patches (the protein orients to place charged amino acids near opposite surface charges). This work shows that both mechanisms contribute to adsorption at low ionic strengths, whereas only the charge-patch mechanism operates at high ionic strength. Interestingly, the contribution of charge regulation is insensitive to protein orientation under all conditions, which validates the use of constant-charge simulations to determine the most stable orientation of adsorbed proteins. The present study also shows that the charged surface can induce large shifts in the apparent p Kas of individual amino acids in adsorbed proteins. Our conclusions are valid for all proteins studied in this work (lysozyme, α-amylase, ribonuclease A, and β-lactoglobulin), as well as for proteins that are not isoelectric but have instead a net charge in solution of the same sign as the surface charge, i.e. the problem of protein adsorption on the "wrong side" of the isoelectric point.
Collapse
Affiliation(s)
| | - G J A A Soler-Illia
- Instituto de Nanosistemas , Universidad Nacional de General San Martín , Avenida 25 de Mayo y Francia , 1650 San Martín , Argentina
| | | |
Collapse
|
5
|
Crowther JM, Allison JR, Smolenski GA, Hodgkinson AJ, Jameson GB, Dobson RCJ. The self-association and thermal denaturation of caprine and bovine β-lactoglobulin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:739-750. [PMID: 29663020 DOI: 10.1007/s00249-018-1300-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
Abstract
Milk components, such as proteins and lipids, have different physicochemical properties depending upon the mammalian species from which they come. Understanding the different responses of these milks to digestion, processing, and differences in their immunogenicity requires detailed knowledge of these physicochemical properties. Here we report on the oligomeric state of β-lactoglobulin from caprine milk, the most abundant protein present in the whey fraction. At pH 2.5 caprine β-lactoglobulin is predominantly monomeric, whereas bovine β-lactoglobulin exists in a monomer-dimer equilibrium at the same protein concentrations. This behaviour was also observed in molecular dynamics simulations and can be rationalised in terms of the amino acid substitutions present between caprine and bovine β-lactoglobulin that result in a greater positive charge on each subunit of caprine β-lactoglobulin at low pH. The denaturation of β-lactoglobulin when milk is heat-treated contributes to the fouling of heat-exchange surfaces, reducing yields and increasing cleaning costs. The bovine and caprine orthologues of β-lactoglobulin display different responses to thermal treatment, with caprine β-lactoglobulin precipitating at higher pH values than bovine β-lactoglobulin (pH 7.1 compared to pH 5.6) that are closer to the natural pH of these milks (pH 6.7). This property of caprine β-lactoglobulin likely contributes to the reduced heat stability of caprine milk compared to bovine milk at its natural pH.
Collapse
Affiliation(s)
- Jennifer M Crowther
- School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Jane R Allison
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Grant A Smolenski
- Food and Bio-Based Products, AgResearch Limited, Ruakura Research Centre, Hamilton, New Zealand
- MS3 Solutions Ltd, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Alison J Hodgkinson
- Food and Bio-Based Products, AgResearch Limited, Ruakura Research Centre, Hamilton, New Zealand
| | - Geoffrey B Jameson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Renwick C J Dobson
- School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- The Riddet Institute, Massey University, Palmerston North, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|