1
|
Barthel T, Huschmann FU, Wallacher D, Feiler CG, Klebe G, Weiss MS, Wollenhaupt J. Facilitated crystal handling using a simple device for evaporation reduction in microtiter plates. J Appl Crystallogr 2021; 54:376-382. [PMID: 33833659 PMCID: PMC7941301 DOI: 10.1107/s1600576720016477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
In the past two decades, most of the steps in a macromolecular crystallography experiment have undergone tremendous development with respect to speed, feasibility and increase of throughput. The part of the experimental workflow that is still a bottleneck, despite significant efforts, involves the manipulation and harvesting of the crystals for the diffraction experiment. Here, a novel low-cost device is presented that functions as a cover for 96-well crystallization plates. This device enables access to the individual experiments one at a time by its movable parts, while minimizing evaporation of all other experiments of the plate. In initial tests, drops of many typically used crystallization cocktails could be successfully protected for up to 6 h. Therefore, the manipulation and harvesting of crystals is straightforward for the experimenter, enabling significantly higher throughput. This is useful for many macromolecular crystallography experiments, especially multi-crystal screening campaigns.
Collapse
Affiliation(s)
- Tatjana Barthel
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Structural Biochemistry Group, Takustraße 5, 14195 Berlin, Germany
| | - Franziska U. Huschmann
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Philipps-Universität Marburg, Institute of Pharmaceutical Chemistry, Drug Design Group, Marbacher Weg 6, 35032 Marburg, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin, Department Sample Environment, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christian G. Feiler
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Gerhard Klebe
- Philipps-Universität Marburg, Institute of Pharmaceutical Chemistry, Drug Design Group, Marbacher Weg 6, 35032 Marburg, Germany
| | - Manfred S. Weiss
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Jan Wollenhaupt
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| |
Collapse
|
2
|
A Simple Technique to Improve Microcrystals Using Gel Exclusion of Nucleation Inducing Elements. CRYSTALS 2018. [DOI: 10.3390/cryst8120464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A technique is described for generating large well diffracting crystals from conditions that yield microcrystals. Crystallization using this technique is both rapid (crystals appear in <1 h) and robust (48 out of 48 co-crystallized with a fragment library, compared with 26 out of 48 using conventional hanging drop). Agarose gel is used to exclude nucleation inducing elements from the remaining crystallization cocktail. The chemicals in the crystallization cocktail are partitioned into high concentration components (presumed to induce aggregation by reducing water activity) and low concentration nucleation agents (presumed to induce nucleation through direct interaction). The nucleation agents are then combined with 2% agarose gel and deposited on the crystallization shelf of a conventional vapor diffusion plate. The remaining components are mixed with the protein and placed in contact with the agarose drop. This technique yielded well diffracting crystals of lysozyme, cubic insulin, proteinase k, and ferritin (ferritin crystals diffracted to 1.43 Å). The crystals grew rapidly, reaching large size in less than one hour (maximum size was achieved in 1–12 h). This technique is not suitable for poorly expressing proteins because small protein volumes diffuse out of the agarose gel too quickly. However, it is a useful technique for situations where crystals must grow rapidly (such as educational applications and preparation of beamline test specimens) and in situations where crystals must grow robustly (such as co-crystallization with a fragment library).
Collapse
|
3
|
Rathnayake U. Static optimal control of combined sewer networks under enhanced cost functions to minimize the adverse environmental effects. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/09715010.2018.1541765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Upaka Rathnayake
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
- School of Civil and Mechanical Engineering, Bentley Campus, Curtin University, Perth, Australia
| |
Collapse
|
4
|
Samara YN, Brennan HM, McCarthy L, Bollard MT, Laspina D, Wlodek JM, Campos SL, Natarajan R, Gofron K, McSweeney S, Soares AS, Leroy L. Using sound pulses to solve the crystal-harvesting bottleneck. Acta Crystallogr D Struct Biol 2018; 74:986-999. [PMID: 30289409 PMCID: PMC6173054 DOI: 10.1107/s2059798318011506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/14/2018] [Indexed: 01/16/2023] Open
Abstract
Crystal harvesting has proven to be difficult to automate and remains the rate-limiting step for many structure-determination and high-throughput screening projects. This has resulted in crystals being prepared more rapidly than they can be harvested for X-ray data collection. Fourth-generation synchrotrons will support extraordinarily rapid rates of data acquisition, putting further pressure on the crystal-harvesting bottleneck. Here, a simple solution is reported in which crystals can be acoustically harvested from slightly modified MiTeGen In Situ-1 crystallization plates. This technique uses an acoustic pulse to eject each crystal out of its crystallization well, through a short air column and onto a micro-mesh (improving on previous work, which required separately grown crystals to be transferred before harvesting). Crystals can be individually harvested or can be serially combined with a chemical library such as a fragment library.
Collapse
Affiliation(s)
- Yasmin N. Samara
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil
| | - Haley M. Brennan
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Liam McCarthy
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, Stony Brook University, New York, NY 11794-5215, USA
| | - Mary T. Bollard
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, York College of Pennsylvania, York, PA 17403, USA
| | - Denise Laspina
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biology, Stony Brook University, New York, NY 11794-5215, USA
| | - Jakub M. Wlodek
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Computer Science, Stony Brook University, New York, NY 11794-5215, USA
| | - Stefanie L. Campos
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Clinical Nutrition, Stony Brook University, New York, NY 11794-5215, USA
| | - Ramya Natarajan
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kazimierz Gofron
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Sean McSweeney
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S. Soares
- Energy Sciences Directorate, NSLS II, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Ludmila Leroy
- Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte-MG, Brazil
| |
Collapse
|
5
|
Gorrec F, Löwe J. Automated Protocols for Macromolecular Crystallization at the MRC Laboratory of Molecular Biology. J Vis Exp 2018:55790. [PMID: 29443035 PMCID: PMC5908693 DOI: 10.3791/55790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
When high quality crystals are obtained that diffract X-rays, the crystal structure may be solved at near atomic resolution. The conditions to crystallize proteins, DNAs, RNAs, and their complexes can however not be predicted. Employing a broad variety of conditions is a way to increase the yield of quality diffraction crystals. Two fully automated systems have been developed at the MRC Laboratory of Molecular Biology (Cambridge, England, MRC-LMB) that facilitate crystallization screening against 1,920 initial conditions by vapor diffusion in nanoliter droplets. Semi-automated protocols have also been developed to optimize conditions by changing the concentrations of reagents, the pH, or by introducing additives that potentially enhance properties of the resulting crystals. All the corresponding protocols will be described in detail and briefly discussed. Taken together, they enable convenient and highly efficient macromolecular crystallization in a multi-user facility, while giving the users control over key parameters of their experiments.
Collapse
Affiliation(s)
- Fabrice Gorrec
- Laboratory of Molecular Biology, Medical Research Council;
| | - Jan Löwe
- Laboratory of Molecular Biology, Medical Research Council
| |
Collapse
|
6
|
Collins PM, Ng JT, Talon R, Nekrosiute K, Krojer T, Douangamath A, Brandao-Neto J, Wright N, Pearce NM, von Delft F. Gentle, fast and effective crystal soaking by acoustic dispensing. Acta Crystallogr D Struct Biol 2017; 73:246-255. [PMID: 28291760 PMCID: PMC5349437 DOI: 10.1107/s205979831700331x] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/28/2017] [Indexed: 01/25/2023] Open
Abstract
The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts.
Collapse
Affiliation(s)
- Patrick M. Collins
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Jia Tsing Ng
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, England
| | - Romain Talon
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, England
| | - Karolina Nekrosiute
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Tobias Krojer
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, England
| | - Alice Douangamath
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Jose Brandao-Neto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
| | - Nathan Wright
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, England
| | - Nicholas M. Pearce
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, England
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Structural Genomics Consortium (SGC), University of Oxford, Oxford OX3 7DQ, England
- Department of Biochemistry, University of Johannesburg, Aukland Park, Johannesburg 2006, South Africa
| |
Collapse
|
7
|
Wu P, Noland C, Ultsch M, Edwards B, Harris D, Mayer R, Harris SF. Developments in the Implementation of Acoustic Droplet Ejection for Protein Crystallography. ACTA ACUST UNITED AC 2015; 21:97-106. [PMID: 26275619 DOI: 10.1177/2211068215598938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/16/2022]
Abstract
Acoustic droplet ejection (ADE) enables crystallization experiments at the low-nanoliter scale, resulting in rapid vapor diffusion equilibration dynamics and efficient reagent usage in the empirical discovery of structure-enabling protein crystallization conditions. We extend our validation of this technology applied to the diverse physicochemical property space of aqueous crystallization reagents where dynamic fluid analysis coupled to ADE aids in accurate and precise dispensations. Addition of crystallization seed stocks, chemical additives, or small-molecule ligands effectively modulates crystallization, and we here provide examples in optimization of crystal morphology and diffraction quality by the acoustic delivery of ultra-small volumes of these cofactors. Additional applications are discussed, including set up of in situ proteolysis and alternate geometries of crystallization that leverage the small scale afforded by acoustic delivery. Finally, we describe parameters of a system of automation in which the acoustic liquid handler is integrated with a robotic arm, plate centrifuge, peeler, sealer, and stacks, which allows unattended high-throughput crystallization experimentation.
Collapse
Affiliation(s)
- Ping Wu
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | - Cameron Noland
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | - Mark Ultsch
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | | | | | - Robert Mayer
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | - Seth F Harris
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
8
|
Teplitsky E, Joshi K, Ericson DL, Scalia A, Mullen JD, Sweet RM, Soares AS. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density. J Struct Biol 2015; 191:49-58. [PMID: 26027487 DOI: 10.1016/j.jsb.2015.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022]
Abstract
We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate™ for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5nL of each component.
Collapse
Affiliation(s)
- Ella Teplitsky
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Department of Biochemistry and Cell Biology, Stony Brook University, NY 11794-5215, USA
| | - Karan Joshi
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Department of Electronics and Electrical Communication Engineering, PEC University of Technology, Chandigarh, India
| | - Daniel L Ericson
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Department of Biomedical Engineering, University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260, USA
| | - Alexander Scalia
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Department of Biological Sciences, 4400 Vestal Parkway East, Binghamton University, NY 13902, USA
| | - Jeffrey D Mullen
- Office of Educational Programs, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; Physics Department, University of Oregon, Eugene, OR 97403-1274, USA
| | - Robert M Sweet
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Alexei S Soares
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| |
Collapse
|