1
|
Gauto DF, Macek P, Malinverni D, Fraga H, Paloni M, Sučec I, Hessel A, Bustamante JP, Barducci A, Schanda P. Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR. Nat Commun 2022; 13:1927. [PMID: 35395851 PMCID: PMC8993905 DOI: 10.1038/s41467-022-29423-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.
Collapse
Affiliation(s)
- Diego F Gauto
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- ICSN, CNRS UPR2301, Univ. Paris-Saclay, Gif-sur-Yvette, France
| | - Pavel Macek
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- Celonic AG, Eulerstrasse 55, 4051, Basel, Switzerland
| | - Duccio Malinverni
- Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hugo Fraga
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigacao e Inovacao em Saude, Universidade do Porto, Porto, Portugal
| | - Matteo Paloni
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Iva Sučec
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Audrey Hessel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Juan Pablo Bustamante
- Instituto de Bioingenieria y Bioinformatica, IBB (CONICET-UNER), Oro Verde, Entre Rios, Argentina
| | - Alessandro Barducci
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France.
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria.
| |
Collapse
|
2
|
Dutoit R, Brandt N, Van Gompel T, Van Elder D, Van Dyck J, Sobott F, Droogmans L. M42 aminopeptidase catalytic site: the structural and functional role of a strictly conserved aspartate residue. Proteins 2020; 88:1639-1647. [PMID: 32673419 DOI: 10.1002/prot.25982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 11/08/2022]
Abstract
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.
Collapse
Affiliation(s)
- Raphaël Dutoit
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium.,Labiris Institut de Recherche, Brussels, Belgium
| | | | - Tom Van Gompel
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Antwerpen, Belgium
| | - Dany Van Elder
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jeroen Van Dyck
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Antwerpen, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Antwerpen, Belgium.,Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Louis Droogmans
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Dutoit R, Van Gompel T, Brandt N, Van Elder D, Van Dyck J, Sobott F, Droogmans L. How metal cofactors drive dimer-dodecamer transition of the M42 aminopeptidase TmPep1050 of Thermotoga maritima. J Biol Chem 2019; 294:17777-17789. [PMID: 31611236 DOI: 10.1074/jbc.ra119.009281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
The M42 aminopeptidases are dinuclear aminopeptidases displaying a peculiar tetrahedron-shaped structure with 12 subunits. Their quaternary structure results from the self-assembly of six dimers controlled by their divalent metal ion cofactors. The oligomeric-state transition remains debated despite the structural characterization of several archaeal M42 aminopeptidases. The main bottleneck is the lack of dimer structures, hindering the understanding of structural changes occurring during the oligomerization process. We present the first dimer structure of an M42 aminopeptidase, TmPep1050 of Thermotoga maritima, along with the dodecamer structure. The comparison of both structures has allowed us to describe how the metal ion cofactors modulate the active-site fold and, subsequently, affect the interaction interface between dimers. A mutational study shows that the M1 site strictly controls dodecamer formation. The dodecamer structure of TmPep1050 also reveals that a part of the dimerization domain delimits the catalytic pocket and could participate in substrate binding.
Collapse
Affiliation(s)
- Raphaël Dutoit
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium .,Labiris Institut de Recherche, avenue Emile Gryzon 1, B1070 Brussels, Belgium
| | - Tom Van Gompel
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium
| | - Nathalie Brandt
- Labiris Institut de Recherche, avenue Emile Gryzon 1, B1070 Brussels, Belgium
| | - Dany Van Elder
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium
| | - Jeroen Van Dyck
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry, Department of Chemistry, Universiteit van Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium.,Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Louis Droogmans
- Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, B6041 Charleroi, Belgium
| |
Collapse
|
4
|
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Emerg Top Life Sci 2018; 2:561-580. [PMID: 32953999 DOI: 10.1042/etls20180025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Archaea are phylogenetically distinct from bacteria, and some of their proteolytic systems reflect this distinction. Here, the current knowledge of archaeal proteolysis is reviewed as it relates to protein metabolism, protein homeostasis, and cellular regulation including targeted proteolysis by proteasomes associated with AAA-ATPase networks and ubiquitin-like modification. Proteases and peptidases that facilitate the recycling of peptides to amino acids as well as membrane-associated and integral membrane proteases are also reviewed.
Collapse
|
5
|
Characterization of a Glycyl-Specific TET Aminopeptidase Complex from Pyrococcus horikoshii. J Bacteriol 2018; 200:JB.00059-18. [PMID: 29866801 DOI: 10.1128/jb.00059-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/29/2018] [Indexed: 01/03/2023] Open
Abstract
The TET peptidases are large self-compartmentalized complexes that form dodecameric particles. These metallopeptidases, members of the M42 family, are widely distributed in prokaryotes. Three different versions of TET complexes, with different substrate specificities, were found to coexist in the cytosol of the hyperthermophilic archaeon Pyrococcus horikoshii In the present work, we identified a novel type of TET complex that we named PhTET4. The recombinant PhTET4 enzyme was found to self-assemble as a tetrahedral edifice similar to other TET complexes. We determined PhTET4 substrate specificity using a broad range of monoacyl chromogenic and fluorogenic compounds. High-performance liquid chromatographic peptide degradation assays were also performed. These experiments demonstrated that PhTET4 is a strict glycyl aminopeptidase, devoid of amidolytic activity toward other types of amino acids. The catalytic efficiency of PhTET4 was studied under various conditions. The protein was found to be a hyperthermophilic alkaline aminopeptidase. Interestingly, unlike other peptidases from the same family, it was activated only by nickel ions.IMPORTANCE We describe here the first known peptidase displaying exclusive activity toward N-terminal glycine residues. This work indicates a specific role for intracellular glycyl peptidases in deep sea hyperthermophilic archaeal metabolism. These observations also provide critical evidence for the use of these archaeal extremozymes for biotechnological applications.
Collapse
|
6
|
Appolaire A, Colombo M, Basbous H, Gabel F, Girard E, Franzetti B. TET peptidases: A family of tetrahedral complexes conserved in prokaryotes. Biochimie 2015; 122:188-96. [PMID: 26546839 DOI: 10.1016/j.biochi.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
Abstract
The TET peptidases are large polypeptide destruction machines present among prokaryotes. They form 12-subunits hollow tetrahedral particles, and belong to the family of M42 metallo-peptidases. Structural characterization of various archaeal and bacterial complexes has revealed a unique mechanism of internal compartmentalization and peptide trafficking that distinguishes them from the other oligomeric peptidases. Different versions of the TET complex often co-exist in the cytosol of microorganisms. In depth enzymatic studies have revealed that they are non-processive cobalt-activated aminopeptidases and display contrasting substrate specificities based on the properties of the catalytic chambers. Recent studies have shed light on the assembly mechanism of homo and hetero-dodecameric TET complexes and shown that the activity of TET aminopeptidase towards polypeptides is coupled with its assembly process. These findings suggested a functional regulation based on oligomerization control in vivo. This review describes a current knowledge on M42 TET peptidases biochemistry and discuss their possible physiological roles. This article is a part of the Special Issue entitled: «A potpourri of proteases and inhibitors: from molecular toolboxes to signalling scissors».
Collapse
Affiliation(s)
- Alexandre Appolaire
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Matteo Colombo
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Hind Basbous
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Frank Gabel
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - E Girard
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
| | - Bruno Franzetti
- CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France; Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France.
| |
Collapse
|
7
|
Slutskaya E, Artemova N, Kleymenov S, Petrova T, Popov V. Heat-induced conformational changes of TET peptidase from crenarchaeon Desulfurococcus kamchatkensis. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015. [PMID: 26219412 DOI: 10.1007/s00249-015-1064-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effects of heating on the structure and stability of multimeric TET aminopeptidase (APDkam589) were studied by differential scanning calorimetry, tryptophan fluorescence quenching, and dynamic light scattering. Thermally induced structural changes in APDkam589 were found to occur in two phases: local conformational changes, which occur below 70 °C and are not associated with thermal denaturation of the protein, and global structural changes (above 70 °C) induced by irreversible thermal unfolding of the protein accompanied by its spontaneous aggregation. These results may explain the bell-shaped temperature dependence with a maximum at ~70 °C previously observed for enzymatic activity of APDkam589. Interestingly, the thermal unfolding of APDkam589 at about 81.2 °C is accompanied by a so-called blue-shift of about 10 nm-a shift of the Trp fluorescence spectrum toward shorter wavelength. From this point of view, APDkam589 is quite different from most proteins, which are characterized by a long wavelength shift of the spectrum ("red-shift") upon denaturation. The blue-shift of the Trp fluorescence spectrum reflects the changes in the environment of Trp residues, which becomes more hydrophobic upon denaturation. The molecular structure of APDkam589 was determined by X-ray diffraction. The monomer of APDkam589 has six Trp residues, five of which are on the external surface of the dodecamer. Therefore, the blue-shift of the Trp fluorescence spectrum can be explained, at least partly, by aggregation of APDkam589, which occurs simultaneously with its thermal denaturation and probably makes the environment of these Trp residues more hydrophobic.
Collapse
Affiliation(s)
- Elvira Slutskaya
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russian Federation.
| | - Natalia Artemova
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russian Federation
| | - Sergey Kleymenov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russian Federation.,N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russian Federation
| | - Tatiana Petrova
- Institute of Mathematical Problems of Biology, RAS, Institutskaja str., 4, Pushchino, 142290, Russian Federation
| | - Vladimir Popov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russian Federation.,Russian National Research Centre "Kurchatov Institute", Akademika Kurchatova sq. 1, Moscow, 123182, Russian Federation
| |
Collapse
|