1
|
Schmelter C, Fomo KN, Brueck A, Perumal N, Markowitsch SD, Govind G, Speck T, Pfeiffer N, Grus FH. Glaucoma-Associated CDR1 Peptide Promotes RGC Survival in Retinal Explants through Molecular Interaction with Acidic Leucine Rich Nuclear Phosphoprotein 32A (ANP32A). Biomolecules 2023; 13:1161. [PMID: 37509196 PMCID: PMC10377047 DOI: 10.3390/biom13071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A's N terminal LRR domain.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Alina Brueck
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| |
Collapse
|
2
|
Klein SA, Majumdar A, Barrick D. A Second Backbone: The Contribution of a Buried Asparagine Ladder to the Global and Local Stability of a Leucine-Rich Repeat Protein. Biochemistry 2019; 58:3480-3493. [PMID: 31347358 PMCID: PMC7184636 DOI: 10.1021/acs.biochem.9b00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parallel β-sheet-containing repeat proteins often display a structural motif in which conserved asparagines form a continuous ladder buried within the hydrophobic core. In such "asparagine ladders", the asparagine side-chain amides form a repetitive pattern of hydrogen bonds with neighboring main-chain NH and CO groups. Although asparagine ladders have been thought to be important for stability, there is little experimental evidence to support such speculation. Here we test the contribution of a minimal asparagine ladder from the leucine-rich repeat protein pp32 to stability and investigate lattice rigidity and hydrogen bond character using solution nuclear magnetic resonance (NMR) spectroscopy. Point substitutions of the two ladder asparagines of pp32 are strongly destabilizing and decrease the cooperativity of unfolding. The chemical shifts of the ladder side-chain HZ protons are shifted significantly downfield in the NMR spectrum and have low temperature coefficients, indicative of strong hydrogen bonding. In contrast, the HE protons are shifted upfield and have temperature coefficients close to zero, suggesting an asymmetry in hydrogen bond strength along the ladder. Ladder NH2 groups have weak 1H-15N cross-peak intensities; 1H-15N nuclear Overhauser effect and 15N CPMG experiments show this to be the result of high rigidity. Hydrogen exchange measurements demonstrate that the ladder NH2 groups exchange very slowly, with rates approaching the global exchange limit. Overall, these results show that the asparagine side chains are held in a very rigid, nondynamic structure, making a significant contribution to the overall stability. In this regard, buried asparagine ladders can be considered "second backbones" within the cores of their elongated β-sheet host proteins.
Collapse
Affiliation(s)
- Sean A. Klein
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Ananya Majumdar
- The Johns Hopkins University Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
3
|
Wei X, Liu Z, Wang J, Yang R, Yang J, Guo Y, Tan H, Chen H, Liu Q, Liu L. The interaction of cellular protein ANP32A with influenza A virus polymerase component PB2 promotes vRNA synthesis. Arch Virol 2019; 164:787-798. [PMID: 30666459 DOI: 10.1007/s00705-018-04139-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
Abstract
The subunits PA, PB1, and PB2 of influenza A virus RNA polymerase are essential for efficient viral RNA synthesis and virus replication because of their role in recruiting multiple nuclear proteins. ANP32A is an acidic leucine-rich nuclear phosphoprotein 32 (ANP32) family member and a crucial cellular protein that determines the species specificity of the influenza virus RNA polymerase activity. However, how ANP32A modulates polymerase activity remains largely unknown. In this study, we showed that viral RNA synthesis was increased in A549 cells overexpressing ANP32A and decreased after treatment with ANP32A RNAi. This decrease in RNA synthesis was reversed by rescued ANP32A expression. The results of docking modeling, co-immunoprecipitation, and yeast two-hybrid assays showed that PB2 was the only subunit of the three that interacted with ANP32A. The C-terminal portion of ANP32A and the middle domains (residues 307-534) of PB2 were required for PB2-ANP32A interaction. Glu189 and Glu196 in ANP32A and Gly450 and Gln447 in PB2 were essential for interaction between ANP32A and PB2. These residues were located in conserved regions of the ANP32A or PB2 protein sequences. These data suggest that ANP32A is recruited to the polymerase through direct interaction with PB2 via critical amino acid residue interactions and promotes viral RNA synthesis. Our findings might provide new insights into the molecular mechanisms underlying influenza virus RNA synthesis and replication in infected human cells.
Collapse
Affiliation(s)
- Xiuli Wei
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhixin Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jingjie Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Ruiping Yang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jing Yang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yang Guo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Huabing Tan
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, 443000, China
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
4
|
Velmurugan BK, Yeh KT, Lee CH, Lin SH, Chin MC, Chiang SL, Wang ZH, Hua CH, Tsai MH, Chang JG, Ko YC. Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) association with lymph node metastasis predicts poor survival in oral squamous cell carcinoma patients. Oncotarget 2017; 7:10879-90. [PMID: 26918356 PMCID: PMC4905446 DOI: 10.18632/oncotarget.7681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/16/2016] [Indexed: 11/26/2022] Open
Abstract
Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) is a multifunctional protein aberrantly expressed in various types of cancers. However, its expression pattern and clinical significance in oral squamous cell carcinoma (OSCC) remains unclear. In this study, we immunohistochemically investigated the expression pattern of ANP32A in 259 OSCC patients and the results were correlated with clinicopathological factors using Allred, Klein and Immunoreactive scoring (IRS) system. Our data indicated that high expression of ANP32A was significantly associated with N stage and tumor differentiation status in OSCC patients. High ANP32A expression with N2/N3 stage had an increased mortality risk than low ANP32A expressing OSCC patients with N0/N1 stage. Functional studies revealed that knockdown of ANP32A significantly decreased the migration and invasion ability thereby concomitantly increasing E-cadherin and decreasing Slug, Claudin-1 and Vimentin expression in vitro. These results suggest that ANP32A is commonly increased in oral squamous cell carcinoma and ANP32A protein could act as a potential biomarker for prognosis assessment of oral cancer patients with lymph node metastasis.
Collapse
Affiliation(s)
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Chung Chin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shang-Lun Chiang
- Environment-Omics-Diseases Research, China Medical University Hospital, Taichung, Taiwan.,Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | - Zhi-Hong Wang
- Environment-Omics-Diseases Research, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Diseases Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|