1
|
Hakami MA, Hazazi A, Albloui F, Gharib AF, Alsaeedi FA, Abdulaziz O, Alhazmi AY, Alsaiari AA. Delineated 3-1-BenCarMethInYlPro-Phosphonic Acid's Adroit Activity against Lung Cancer through Multitargeted Docking, MM\GBSA, QM-DFT and Multiscale Simulations. Int J Mol Sci 2024; 25:592. [PMID: 38203761 PMCID: PMC10779231 DOI: 10.3390/ijms25010592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is a pervasive and challenging disease with limited treatment options, with global health challenges often present with complex molecular profiles necessitating the exploration of innovative therapeutic strategies. Single-target drugs have shown limited success due to the heterogeneity of this disease. Multitargeted drug designing is imperative to combat this complexity by simultaneously targeting multiple target proteins and pathways, which can enhance treatment efficacy and overcome resistance by addressing the dynamic nature of the disease and stopping tumour growth and spread. In this study, we performed the molecular docking studies of Drug Bank compounds with a multitargeted approach against crucial proteins of lung cancer such as heat shock protein 5 (BIP/GRP78) ATPase, myosin 9B RhoGAP, EYA2 phosphatase inhibitor, RSK4 N-terminal kinase, and collapsin response mediator protein-1 (CRMP-1) using HTVS, SP with XP algorithms, and poses were filtered using MM\GBSA which identified [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BenCarMethIn YlPro-Phosphonic Acid) (DB02504) as multitargeted drug candidate with docking and MM\GBSA score ranges from -5.83 to -10.66 and -7.56 to -50.14 Kcal/mol, respectively. Further, the pharmacokinetic and QM-based DFT studies have shown complete acceptance results, and interaction fingerprinting reveals that ILE, GLY, VAL, TYR, LEU, and GLN were among the most interacting residues. The 100 ns MD simulation in the SPC water model with NPT ensemble showed stable performance with deviation and fluctuations <2 Å with huge interactions, making it a promising multitargeted drug candidate; however, experimental studies are needed before use.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 19257, Saudi Arabia;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia; (A.H.); (F.A.)
| | - Fawaz Albloui
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia; (A.H.); (F.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.F.G.); (F.A.A.); (O.A.)
| | - Fouzeyyah Ali Alsaeedi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.F.G.); (F.A.A.); (O.A.)
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.F.G.); (F.A.A.); (O.A.)
| | - Abdulfattah Y. Alhazmi
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.F.G.); (F.A.A.); (O.A.)
| |
Collapse
|
2
|
Ravindran E, Arashiki N, Becker LL, Takizawa K, Lévy J, Rambaud T, Makridis KL, Goshima Y, Li N, Vreeburg M, Demeer B, Dickmanns A, Stegmann APA, Hu H, Nakamura F, Kaindl AM. Monoallelic CRMP1 gene variants cause neurodevelopmental disorder. eLife 2022; 11:80793. [PMID: 36511780 PMCID: PMC9803352 DOI: 10.7554/elife.80793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are key for brain development and function. Here, we link CRMP1 to a neurodevelopmental disorder. We report heterozygous de novo variants in the CRMP1 gene in three unrelated individuals with muscular hypotonia, intellectual disability, and/or autism spectrum disorder. Based on in silico analysis these variants are predicted to affect the CRMP1 structure. We further analyzed the effect of the variants on the protein structure/levels and cellular processes. We showed that the human CRMP1 variants impact the oligomerization of CRMP1 proteins. Moreover, overexpression of the CRMP1 variants affect neurite outgrowth of murine cortical neurons. While altered CRMP1 levels have been reported in psychiatric diseases, genetic variants in CRMP1 gene have never been linked to human disease. We report for the first-time variants in the CRMP1 gene and emphasize its key role in brain development and function by linking directly to a human neurodevelopmental disease.
Collapse
Affiliation(s)
- Ethiraj Ravindran
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nobuto Arashiki
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Lena-Luise Becker
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kohtaro Takizawa
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Jonathan Lévy
- Department of Genetics, Robert Debré University Hospital, Paris, France.,Laboratoire de biologie médicale multisites Seqoia, Paris, France
| | - Thomas Rambaud
- Laboratoire de biologie médicale multisites Seqoia, Paris, France
| | - Konstantin L Makridis
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Maaike Vreeburg
- Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bénédicte Demeer
- Center for Human Genetics, CLAD Nord de France, CHU Amiens-Picardie, Amiens, France.,CHIMERE EA 7516, University Picardie Jules Verne, Amiens, France
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fumio Nakamura
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Xiao M, Cui S, Zhang L, Yu T, Zhang G, Li L, Cai Y, Jin C, Yang J, Wu S, Li Q, Lu X. Benzo[a]pyrene diol epoxide-induced transformed cells identify the significance of hsa_circ_0051488, a ERCC1-derived circular RNA in pulmonary squamous cell carcinoma. Mol Carcinog 2021; 60:684-701. [PMID: 34320692 DOI: 10.1002/mc.23335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 11/07/2022]
Abstract
ERCC1 is a gene for repairing DNA damage whose function is related to carcinogenic-induced tumorigenesis and the effectiveness of platinum therapies. Circular RNAs (circRNAs) are products of posttranscriptional regulation with pleiotropic effects on the pathogenesis of lung cancer. We aim to identify that specific circRNAs derived from ERCC1 can regulate key biological processes involved in the development of lung cancer. We performed bioinformatics analysis, in vitro experiments, and analyzed clinical samples, to determine the biological features of a certain ERCC1-derived circRNA termed as hsa_circ_0051488 in benzo[a]pyrene diol epoxide-induced malignant transformed cell and lung cancer cell. The well-established model of transformed cells provided an ideal platform for analyzing the molecular characteristics of this circRNA in the malignant transformation of lung epithelial cell, which supports that hsa_circ_0051488 functions in the onset and growth of lung squamous cell carcinoma (LUSC). Further analysis indicates that the absence of hsa_circ_0051488 promoted the proliferation of cells with the malignant phenotype. Extensive experiments confirm that hsa_circ_0051488 is present in the cytoplasm and functioned as a competing endogenous RNA. In particular, hsa_circ_0051488 binds to mir-6717-5p, thereby modulating the expression of SATB2 gene, a lung cancer suppressor. Furthermore, our in silico experiments indicate that SATB2 can inhibit multiple tumor pathways and its expression positively correlated with the tumor suppressor gene CRMP1. These findings suggest a possible regulatory mechanism of hsa_circ_0051488 in LUSC, and that the newly discovered hsa_circ_0051488/miR-6717-5p/SATB2 axis may be a potential route for therapeutic intervention of LUSC.
Collapse
Affiliation(s)
- Mingyang Xiao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Tao Yu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Guopei Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Liuli Li
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Panchal II, Rajput R, Patel AD. Design, Synthesis and Pharmacological Evalution of 1,3,4-Oxadiazole Derivatives as Collapsin Response Mediator Protein 1 (CRMP 1) Inhibitors. Curr Drug Discov Technol 2021; 17:57-67. [PMID: 30398117 DOI: 10.2174/1570163815666181106090708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The series of 2-(4-Phenylamino)-N-(5-((4-nitrophenoxy)methyl) -1,3,4-oxadiazol- 2-yl)aceta-mide (5a-5e) and substituted N-(5-(Phenoxymethyl)-1,3,4-oxadiazol-2-yl)-2- (phenylamino)acetamide (5f-5i) was designed, synthesized and investigated for Collapsin Response Mediator Protein 1 (CRMP 1) inhibitors as small lung cancer. DESIGN Design of compounds was determined by literature review and molecular docking studies in iGEMDOCK 2.0. MATERIALS AND METHODS Novel 1, 3, 4 Oxadiazole derivatives were synthesized and characterized by melting point, TLC, IR Spectroscopy, Mass spectroscopy and 1H NMR. In vitro biological evaluation was performed on NCI-H2066 cell line for different concentrations 10-1000μM by telomeric repeat amplification protocol assay. The assay of telomerase in cellular extracts was modified from the PCR-based Telomeric-Repeat Amplification Protocol (TRAP), using the oligonucleotides TS and CX. RESULTS Novel substituted 2-(4-Phenylamino)-N-(5-((4-nitrophenoxy)methyl)-1,3,4-oxadiazol-2- yl) acetamide (5a-5e) and substituted N-(5-(Phenoxymethyl)-1,3,4-oxadiazol-2-yl)-2-(phenylamino) acetamide (5f-5i) were synthesized, and characterized using spectral and analytical data. All compounds have shown considerable % inhibition of Cell Growth with respect to Bevacizumab, but compound 5a and 5f were equipotent with respect to activity as compared to standard Bevacizumab. CONCLUSION Amongst the hybrids, p-nitro substituted derivative (5a) and p-chloro substituted (5f) showed the highest activity against human lung cancer cell line NCI-H2066 by TRAP assay.
Collapse
Affiliation(s)
- Ishan I Panchal
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara-391760, Gujarat, India
| | - Roshani Rajput
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara-391760, Gujarat, India
| | - Ashish D Patel
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara-391760, Gujarat, India
| |
Collapse
|
5
|
Dustrude ET, Perez-Miller S, François-Moutal L, Moutal A, Khanna M, Khanna R. A single structurally conserved SUMOylation site in CRMP2 controls NaV1.7 function. Channels (Austin) 2017; 11:316-328. [PMID: 28277940 DOI: 10.1080/19336950.2017.1299838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The neuronal collapsin response mediator protein 2 (CRMP2) undergoes several posttranslational modifications that codify its functions. Most recently, CRMP2 SUMOylation (addition of small ubiquitin like modifier (SUMO)) was identified as a key regulatory step within a modification program that codes for CRMP2 interaction with, and trafficking of, voltage-gated sodium channel NaV1.7. In this paper, we illustrate the utility of combining sequence alignment within protein families with structural analysis to identify, from several putative SUMOylation sites, those that are most likely to be biologically relevant. Co-opting this principle to CRMP2, we demonstrate that, of 3 sites predicted to be SUMOylated in CRMP2, only the lysine 374 site is a SUMOylation client. A reduction in NaV1.7 currents was the corollary of the loss of CRMP2 SUMOylation at this site. A 1.78-Å-resolution crystal structure of mouse CRMP2 was solved using X-ray crystallography, revealing lysine 374 as buried within the CRMP2 tetramer interface but exposed in the monomer. Since CRMP2 SUMOylation is dependent on phosphorylation, we postulate that this state forces CRMP2 toward a monomer, exposing the SUMO site and consequently, resulting in constitutive regulation of NaV1.7.
Collapse
Affiliation(s)
- Erik Thomas Dustrude
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Samantha Perez-Miller
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Liberty François-Moutal
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Aubin Moutal
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - May Khanna
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Rajesh Khanna
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA.,b Department of Anesthesiology, College of Medicine , University of Arizona , Tucson , AZ , USA.,c Neuroscience Graduate Interdisciplinary Program, College of Medicine , University of Arizona , Tucson , AZ , USA
| |
Collapse
|
6
|
Collapsin response mediator protein 2: high-resolution crystal structure sheds light on small-molecule binding, post-translational modifications, and conformational flexibility. Amino Acids 2017; 49:747-759. [PMID: 28044206 DOI: 10.1007/s00726-016-2376-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Collapsin response mediator protein 2 (CRMP-2) is a neuronal protein involved in axonal pathfinding. Intense research is focusing on its role in various neurological diseases. Despite a wealth of studies, not much is known about the molecular mechanisms of CRMP-2 function in vivo. The detailed structure-function relationships of CRMP-2 have also largely remained unknown, in part due to the fact that the available crystal structures lack the C-terminal tail, which is known to be a target for many post-translational modifications and protein interactions. Although CRMP-2, and other CRMPs, belong to the dihydropyrimidinase family, they have lost the enzymatic active site. Drug candidates for CRMP-2-related processes have come up during the recent years, but no reports of CRMP-2 complexes with small molecules have emerged. Here, CRMP-2 was studied at 1.25-Å resolution using X-ray crystallography. In addition, ligands were docked into the homotetrameric structure, and the C-terminal tail of CRMP-2 was produced recombinantly and analyzed. We have obtained the human CRMP-2 crystal structure at atomic resolution and could identify small-molecule binding pockets in the protein. Structures obtained in different crystal forms highlight flexible regions near possible ligand-binding pockets. We also used the CRMP-2 structure to analyze known or suggested post-translational modifications at the 3D structural level. The high-resolution CRMP-2 structure was also used for docking experiments with the sulfur amino acid metabolite lanthionine ketimine and its ester. We show that the C-terminal tail is intrinsically disordered, but it has conserved segments that may act as interaction sites. Our data provide the most accurate structural data on CRMPs to date and will be useful in further computational and experimental studies on CRMP-2, its function, and its binding to small-molecule ligands.
Collapse
|