1
|
Georgiou C, Espeland LO, Bukya H, Yadrykhins'ky V, Haug BE, Mainkar PS, Brenk R. Towards new antibiotics: P. aeruginosa FabF ligands discovered by crystallographic fragment screening followed by hit expansion. Eur J Med Chem 2025; 291:117563. [PMID: 40233425 DOI: 10.1016/j.ejmech.2025.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/17/2025]
Abstract
There is an urgent need for new antibiotics. FabF (3-oxoacyl-[acyl-carrier-protein] synthase 2), which catalyses the rate limiting condensation reaction in the fatty acid synthesis II pathway, is an attractive target. Very few inhibitors of FabF are known and most are derived from natural products. In an effort to further explore the chemical space of FabF ligands, we have carried out fragment screening by X-ray crystallography against an intermediated state-mimicking variant of P. aeruginosa FabF (PaFabF C164Q). This screen has resulted in 48 hits out of which 16 bind in or close to the malonyl-CoA or fatty acid binding site or an adjacent dimer interface. None of the closer investigated fragments were active in a binding assay, but the same was the case for fragments derived from a potent FabF inhibitor. For hit optimization, we focused on the two fragments binding close to the catalytic residues of FabF. Different strategies were followed in the optimization process: exploration of commercially available analogues, fragment merging, virtual screening of a combinatorial make-on-demand space, and design and in-house synthesis of analogues. In total, more than 90 analogues of the hit compounds were explored, and for 10 of those co-crystal structures could be determined. The most potent ligand was discovered using manual structure-based design and has a binding affinity of 65 μM. This data package forms a strong foundation for the development of more potent and diverse FabF inhibitors.
Collapse
Affiliation(s)
- Charis Georgiou
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5020 Bergen, Norway
| | - Ludvik Olai Espeland
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5020 Bergen, Norway; Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Hemalatha Bukya
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| | - Vladyslav Yadrykhins'ky
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5020 Bergen, Norway; Department of Medicine, Haukeland University Hospital, Postboks 1400, 5021 Bergen, Norway
| | - Bengt Erik Haug
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5020 Bergen, Norway; Computational Biology Unit, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
| |
Collapse
|
2
|
Yadrykhins'ky V, Georgiou C, Brenk R. Crystal structure of Pseudomonas aeruginosa FabB C161A, a template for structure-based design for new antibiotics. F1000Res 2022; 10. [PMID: 35136566 PMCID: PMC8804906 DOI: 10.12688/f1000research.74018.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background: FabB (3-oxoacyl-[acyl-carrier-protein] synthase 1) is part of the fatty acid synthesis II pathway found in bacteria and a potential target for antibiotics. The enzyme catalyses the Claisen condensation of malonyl-ACP (acyl carrier protein) with acyl-ACP via an acyl-enzyme intermediate. Here, we report the crystal structure of the intermediate-mimicking
Pseudomonas aeruginosa FabB (
PaFabB) C161A variant. Methods: His-tagged
PaFabB C161A was expressed in
E. coli Rosetta DE3 pLysS cells, cleaved by TEV protease and purified using affinity and size exclusion chromatography. Commercial screens were used to identify suitable crystallization conditions which were subsequently improved to obtain well diffracting crystals. Results: We developed a robust and efficient system for recombinant expression of
PaFabB C161A. Conditions to obtain well diffracting crystals were established. The crystal structure of
PaFabB C161A was solved by molecular replacement at 1.3 Å resolution. Binding site comparison between
PaFabB and
PaFabF revealed a conserved malonyl binding site but differences in the fatty acid binding channel. Conclusions: The
PaFabB C161A crystal structure can be used as a template to facilitate the design of FabB inhibitors.
Collapse
Affiliation(s)
| | - Charis Georgiou
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| |
Collapse
|
3
|
Espeland LO, Georgiou C, Klein R, Bhukya H, Haug BE, Underhaug J, Mainkar PS, Brenk R. An Experimental Toolbox for Structure-Based Hit Discovery for P. aeruginosa FabF, a Promising Target for Antibiotics. ChemMedChem 2021; 16:2715-2726. [PMID: 34189850 PMCID: PMC8518799 DOI: 10.1002/cmdc.202100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Indexed: 12/12/2022]
Abstract
FabF (3-oxoacyl-[acyl-carrier-protein] synthase 2), which catalyses the rate limiting condensation reaction in the fatty acid synthesis II pathway, is an attractive target for new antibiotics. Here, we focus on FabF from P. aeruginosa (PaFabF) as antibiotics against this pathogen are urgently needed. To facilitate exploration of this target we have set up an experimental toolbox consisting of binding assays using bio-layer interferometry (BLI) as well as saturation transfer difference (STD) and WaterLOGSY NMR in addition to robust conditions for structure determination. The suitability of the toolbox to support structure-based design of FabF inhibitors was demonstrated through the validation of hits obtained from virtual screening. Screening a library of almost 5 million compounds resulted in 6 compounds for which binding into the malonyl-binding site of FabF was shown. For one of the hits, the crystal structure in complex with PaFabF was determined. Based on the obtained binding mode, analogues were designed and synthesised, but affinity could not be improved. This work has laid the foundation for structure-based exploration of PaFabF.
Collapse
Affiliation(s)
- Ludvik Olai Espeland
- Department of BiomedicineUniversity of BergenJonas Lies Vei 915020BergenNorway
- Department of ChemistryUniversity of BergenAllégaten 415007BergenNorway
| | - Charis Georgiou
- Department of BiomedicineUniversity of BergenJonas Lies Vei 915020BergenNorway
| | - Raphael Klein
- Department of BiomedicineUniversity of BergenJonas Lies Vei 915020BergenNorway
- Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityStaudingerweg 555128MainzGermany
| | - Hemalatha Bhukya
- Department of Organic Synthesis & Process ChemistryCSIR-Indian Institute of Chemical TechnologyTarnakaHyderabad500007India
| | - Bengt Erik Haug
- Department of ChemistryUniversity of BergenAllégaten 415007BergenNorway
| | - Jarl Underhaug
- Department of ChemistryUniversity of BergenAllégaten 415007BergenNorway
| | - Prathama S. Mainkar
- Department of Organic Synthesis & Process ChemistryCSIR-Indian Institute of Chemical TechnologyTarnakaHyderabad500007India
| | - Ruth Brenk
- Department of BiomedicineUniversity of BergenJonas Lies Vei 915020BergenNorway
| |
Collapse
|
4
|
Crystal structure of MBP-PigG fusion protein and the essential function of PigG in the prodigiosin biosynthetic pathway in Serratia marcescens FS14. Int J Biol Macromol 2017; 99:394-400. [PMID: 28258005 DOI: 10.1016/j.ijbiomac.2017.02.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/23/2022]
Abstract
Prodigiosin, a tripyrrole red pigment is synthesized by Serratia and some other microbes through a bifurcated biosynthesis pathway; MBC (4-methoxy-2,2'-bipyrrole-5-carbaldehyde) and MAP (2-methyl-3-n-amyl-pyrrole) are synthesized separately and then condensed by PigC to form prodigiosin. PigI, PigG and PigA have been shown to be involved in the first steps of MBC biosynthesis (proline incorporation). The crystal structure of PigG was resolved to elucidate its function and mechanism. PigG, an acyl carrier protein (ACP), features the ACP architecture:, a helical bundle fold containing three major helices and a minor distorted helix together with a conserved "S" motif. An in-frame deletion mutation of the pigG gene abolished the synthesis of prodigiosin in Serratia marcescens FS14. The production of prodigiosin was fully restored by complementation of intact pigG; however the S36A mutant was not able to restore function in the in-frame deletion pigG mutant, indicating that PigG and the conserved serine residue (S36) of PigG are essential for the synthesis of prodigiosin.
Collapse
|