1
|
Fawaz R, Bingham C, Nayebi H, Chiou J, Gilbert L, Park SH, Geiger JH. The Structure of Maltooctaose-Bound Escherichia coli Branching Enzyme Suggests a Mechanism for Donor Chain Specificity. Molecules 2023; 28:molecules28114377. [PMID: 37298853 DOI: 10.3390/molecules28114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Glycogen is the primary storage polysaccharide in bacteria and animals. It is a glucose polymer linked by α-1,4 glucose linkages and branched via α-1,6-linkages, with the latter reaction catalyzed by branching enzymes. Both the length and dispensation of these branches are critical in defining the structure, density, and relative bioavailability of the storage polysaccharide. Key to this is the specificity of branching enzymes because they define branch length. Herein, we report the crystal structure of the maltooctaose-bound branching enzyme from the enterobacteria E. coli. The structure identifies three new malto-oligosaccharide binding sites and confirms oligosaccharide binding in seven others, bringing the total number of oligosaccharide binding sites to twelve. In addition, the structure shows distinctly different binding in previously identified site I, with a substantially longer glucan chain ordered in the binding site. Using the donor oligosaccharide chain-bound Cyanothece branching enzyme structure as a guide, binding site I was identified as the likely binding surface for the extended donor chains that the E. coli branching enzyme is known to transfer. Furthermore, the structure suggests that analogous loops in branching enzymes from a diversity of organisms are responsible for branch chain length specificity. Together, these results suggest a possible mechanism for transfer chain specificity involving some of these surface binding sites.
Collapse
Affiliation(s)
- Remie Fawaz
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney Bingham
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Hadi Nayebi
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Janice Chiou
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsey Gilbert
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Sung Hoon Park
- Department of Food Service Management and Nutrition, College of Natural Sciences, Sangmyung University, Hongjidong, Jongnogu, Seoul 03016, Republic of Korea
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Yang T, Hu Q, Liu Y, Xu R, Wang D, Chang Z, Jin M, Huang J. Biochemical characteristics and potential application of a thermostable starch branching enzyme from Bacillus licheniformis. AMB Express 2023; 13:8. [PMID: 36662316 PMCID: PMC9859979 DOI: 10.1186/s13568-023-01511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023] Open
Abstract
Slowly digestible starch (SDS) has attracted increasing attention for its function of preventing metabolic diseases. Based on transglycosylation, starch branching enzymes (1,4-α-glucan branching enzymes, GBEs, EC 2.4.1.18) can be used to regulate the digestibility of starch. In this study, a GBE gene from Bacillus licheniformis (bl-GBE) was cloned, expressed, purified, and characterized. Sequence analysis and structural modeling showed that bl-GBE belong to the glycoside hydrolase 13 (GH13) family, with which its active site residues were conserved. The bl-GBE was highly active at 80 °C and a pH range of 7.5-9.0, and retained 90% of enzyme activity at 70 °C for 16 h. bl-GBE also showed high substrate specificity (80.88 U/mg) on potato starch. The stability and the changes of the secondary structure of bl-GBE at different temperature were determined by circular dichroism (CD) spectroscopy. The CD data showed a loss of 20% of the enzyme activity at high temperatures (80 °C), due to the decreased content of the α -helix in the secondary structure. Furthermore, potato starch treated with bl-GBE (300 U/g starch) showed remarkable increase in stability, solubility, and significant reduction viscosity. Meanwhile, the slowly digestible starch content of bl-GBE modified potato starch increased by 53.03% compared with native potato starch. Our results demonstrated the potential applications of thermophilic bl-GBE in food industries.
Collapse
Affiliation(s)
- Ting Yang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Qianyu Hu
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Yu Liu
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Rui Xu
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Dongrui Wang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Zhongyi Chang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Mingfei Jin
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| | - Jing Huang
- grid.22069.3f0000 0004 0369 6365School of Life Sciences, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
3
|
Ban X, Xi S, Jiang H, Gu Z, Li C, Cheng L, Hong Y, Li Z. The amino acid on the top of the active groove allosterically modulates product specificity of the 1,4-α-glucan branching enzyme. Food Chem 2022; 384:132458. [PMID: 35219229 DOI: 10.1016/j.foodchem.2022.132458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/02/2023]
Abstract
The 1,4-α-glucan branching enzymes (GBEs, EC 2.4.1.18) catalyse the formation of α-1,6 branching points in starch, presenting several potential applications in modifying starch. Previous study proved that W285 is considered to act as a "switch" to stop extension of substrates in the structure of GBE from Cyanothece sp. (cceBE). In the structure of GBE from Rhodothermus obamensis STB05 (RoGBE), the amino acid 160 site is structurally similar to the W285 in cceBE. In order to explore the role of this site in RoGBE, several engineered mutants individually substituted with Arg, Phe and Ala at G160 were studied in our research. The results show that substitution with Arg and Phe increased branching activity significantly, and the ratio of short glucan chains among all oligosaccharides increased. Finally, we proposed that the G160 is a 'door model' to elucidate introduced mutagenesis that triggers and controls the length of binding glucan chains of starch.
Collapse
Affiliation(s)
- Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shixia Xi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haimin Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Cyanobacterial branching enzymes bind to α-glucan via surface binding sites. Arch Biochem Biophys 2021; 702:108821. [PMID: 33662318 DOI: 10.1016/j.abb.2021.108821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Besides their catalysis, specific interactions between starch/glycogen processing enzymes and their substrates have been reported. Multiple branching enzyme (BE) isoforms, BE1, BE2, and BE3, have been found in a limited number of cyanobacterial species that are characterized by amylopectin accumulation. Seven surface binding sites (SBSs) located away from the active site have been identified in crystal structures of cyanobacterial BE1 from Crocosphaera subtropica (Cyanothece sp.) ATCC 51142 (51142BE1). In the present study, binding affinity toward amylopectin, amylose, and glycogen was investigated for wild-type 51142BE1 and its mutants (residues at SBSs important for sugar-binding were replaced by alanine). These enzymes showed retarded mobility during electrophoresis in non-denaturing polyacrylamide gels in the presence of polysaccharides. This was caused by interactions between the enzymes and the polysaccharides, enabling calculation of the dissociation constants (Kd values) of the enzymes toward the polysaccharides. Mutational analysis indicated that particular domains of the protein (domains A and C) were involved in the polysaccharide binding. Kd values toward the polysaccharides were also measured for 10 BE isoforms (five BE1, three BE2, and two BE3) from 5 cyanobacterial strains. All BEs displayed much lower Kd values (higher affinity) toward amylopectin and amylose than toward glycogen, as described for plant BEs. In addition, one BE2 displayed exceptionally high Kd values (low affinity), while two BE3 exhibited multiple Kd values to all polysaccharides. These results could be ascribed to sequence variations in the SBSs, irrespective of the catalytic specificity.
Collapse
|
5
|
Chengyao X, Yan Q, Chaonan D, Xiaopei C, Yanxin W, Ding L, Xianfeng Y, Jian H, Yan H, Zhongli C, Zhoukun L. Enzymatic properties of an efficient glucan branching enzyme and its potential application in starch modification. Protein Expr Purif 2020; 178:105779. [PMID: 33115653 DOI: 10.1016/j.pep.2020.105779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Glucan branching enzymes (GBEs, EC 2.4.1.18) catalyze the formation of α-1,6-linked branch in starch, which is important for the starch modification with prospective properties. In this study, the aqGBE gene encoding an efficient glucan branching enzyme was cloned from Aquabacterium sp. strain A7-Y and successfully expressed in Escherichia coli BL21 (DE3). The specific activity of the purified recombinant enzyme rAqGBE was 2850 U/mg with potato starch as the optimal substrate, and the Km and Vmax values of rAqGBE were 1.18 mg/mL and 588.2 μmol/min/mg, respectively. Enzymological characterization showed that rAqGBE exhibits its optimal activity under the condition of 40 °C and pH 7.0, respectively, which is independent of calcium ions. Otherwise, rAqGBE-treated potato starch showed different chain length distribution compared with control, the numbers of short chains (degree of polymerization, DP < 7) and long chains (DP > 25) increased from 4.5% to 9.6% and 6.1%-15.7% after enzymatic treatment, respectively. In starch anti-ageing assay, with minimum usage of 0.8 mg rAqGBE per g starch, the rAqGBE-treated potato starch exhibited reduced retrogradation properties. Our results indicate that the branching enzyme AqGBE may therefore be a promising tool for the enzymatic modification of starch.
Collapse
Affiliation(s)
- Xia Chengyao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qiao Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dong Chaonan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chen Xiaopei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wang Yanxin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Li Ding
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Ye Xianfeng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Han Jian
- College of Agriculture, Xinjiang Agricultural University, XinJiang, 830052, China
| | - Huang Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cui Zhongli
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Li Zhoukun
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
6
|
Ban X, Dhoble AS, Li C, Gu Z, Hong Y, Cheng L, Holler TP, Kaustubh B, Li Z. Bacterial 1,4-α-glucan branching enzymes: characteristics, preparation and commercial applications. Crit Rev Biotechnol 2020; 40:380-396. [DOI: 10.1080/07388551.2020.1713720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Abhishek S. Dhoble
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Tod P. Holler
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Bhalerao Kaustubh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
7
|
Xin C, Ban X, Gu Z, Li C, Cheng L, Hong Y, Li Z. Non-classical secretion of 1,4-alpha-glucan branching enzymes without signal peptides in Escherichia coli. Int J Biol Macromol 2019; 132:759-765. [DOI: 10.1016/j.ijbiomac.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 11/16/2022]
|
8
|
Gangoiti J, Corwin SF, Lamothe LM, Vafiadi C, Hamaker BR, Dijkhuizen L. Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Crit Rev Food Sci Nutr 2018; 60:123-146. [PMID: 30525940 DOI: 10.1080/10408398.2018.1516621] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The glycemic carbohydrates we consume are currently viewed in an unfavorable light in both the consumer and medical research worlds. In significant part, these carbohydrates, mainly starch and sucrose, are looked upon negatively due to their rapid and abrupt glucose delivery to the body which causes a high glycemic response. However, dietary carbohydrates which are digested and release glucose in a slow manner are recognized as providing health benefits. Slow digestion of glycemic carbohydrates can be caused by several factors, including food matrix effect which impedes α-amylase access to substrate, or partial inhibition by plant secondary metabolites such as phenolic compounds. Differences in digestion rate of these carbohydrates may also be due to their specific structures (e.g. variations in degree of branching and/or glycosidic linkages present). In recent years, much has been learned about the synthesis and digestion kinetics of novel α-glucans (i.e. small oligosaccharides or larger polysaccharides based on glucose units linked in different positions by α-bonds). It is the synthesis and digestion of such structures that is the subject of this review.
Collapse
Affiliation(s)
- Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Sarah F Corwin
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lisa M Lamothe
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | | | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Hayashi M, Suzuki R, Colleoni C, Ball SG, Fujita N, Suzuki E. Bound Substrate in the Structure of Cyanobacterial Branching Enzyme Supports a New Mechanistic Model. J Biol Chem 2017; 292:5465-5475. [PMID: 28193843 DOI: 10.1074/jbc.m116.755629] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
Branching enzyme (BE) catalyzes the formation of α-1,6-glucosidic linkages in amylopectin and glycogen. The reaction products are variable, depending on the organism sources, and the mechanistic basis for these different outcomes is unclear. Although most cyanobacteria have only one BE isoform belonging to glycoside hydrolase family 13, Cyanothece sp. ATCC 51142 has three isoforms (BE1, BE2, and BE3) with distinct enzymatic properties, suggesting that investigations of these enzymes might provide unique insights into this system. Here, we report the crystal structure of ligand-free wild-type BE1 (residues 5-759 of 1-773) at 1.85 Å resolution. The enzyme consists of four domains, including domain N, carbohydrate-binding module family 48 (CBM48), domain A containing the catalytic site, and domain C. The central domain A displays a (β/α)8-barrel fold, whereas the other domains adopt β-sandwich folds. Domain N was found in a new location at the back of the protein, forming hydrogen bonds and hydrophobic interactions with CBM48 and domain A. Site-directed mutational analysis identified a mutant (W610N) that bound maltoheptaose with sufficient affinity to enable structure determination at 2.30 Å resolution. In this structure, maltoheptaose was bound in the active site cleft, allowing us to assign subsites -7 to -1. Moreover, seven oligosaccharide-binding sites were identified on the protein surface, and we postulated that two of these in domain A served as the entrance and exit of the donor/acceptor glucan chains, respectively. Based on these structures, we propose a substrate binding model explaining the mechanism of glycosylation/deglycosylation reactions catalyzed by BE.
Collapse
Affiliation(s)
- Mari Hayashi
- From the Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan and
| | - Ryuichiro Suzuki
- From the Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan and
| | - Christophe Colleoni
- the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, CNRS-Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Steven G Ball
- the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576, CNRS-Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Naoko Fujita
- From the Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan and
| | - Eiji Suzuki
- From the Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan and
| |
Collapse
|
10
|
Suzuki E, Suzuki R. Distribution of glucan-branching enzymes among prokaryotes. Cell Mol Life Sci 2016; 73:2643-60. [PMID: 27141939 PMCID: PMC11108348 DOI: 10.1007/s00018-016-2243-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
Glucan-branching enzyme plays an essential role in the formation of branched polysaccharides, glycogen, and amylopectin. Only one type of branching enzyme, belonging to glycoside hydrolase family 13 (GH13), is found in eukaryotes, while two types of branching enzymes (GH13 and GH57) occur in prokaryotes (Bacteria and Archaea). Both of these types are the members of protein families containing the diverse specificities of amylolytic glycoside hydrolases. Although similarities are found in the catalytic mechanism between the two types of branching enzyme, they are highly distinct from each other in terms of amino acid sequence and tertiary structure. Branching enzymes are found in 29 out of 30 bacterial phyla and 1 out of 5 archaeal phyla, often along with glycogen synthase, suggesting the existence of α-glucan production and storage in a wide range of prokaryotes. Enormous variability is observed as to which type and how many copies of branching enzyme are present depending on the phylum and, in some cases, even among species of the same genus. Such a variation may have occurred through lateral transfer, duplication, and/or differential loss of genes coding for branching enzyme during the evolution of prokaryotes.
Collapse
Affiliation(s)
- Eiji Suzuki
- Department of Biological Production, Akita Prefectural University, 241-438, Kaidobata-Nishi, Shimoshinjyo-Nakano, Akita, 010-0195, Japan.
| | - Ryuichiro Suzuki
- Department of Biological Production, Akita Prefectural University, 241-438, Kaidobata-Nishi, Shimoshinjyo-Nakano, Akita, 010-0195, Japan
| |
Collapse
|