1
|
Diatlova EA, Mechetin GV, Yudkina AV, Zharkov VD, Torgasheva NA, Endutkin AV, Shulenina OV, Konevega AL, Gileva IP, Shchelkunov SN, Zharkov DO. Correlated Target Search by Vaccinia Virus Uracil-DNA Glycosylase, a DNA Repair Enzyme and a Processivity Factor of Viral Replication Machinery. Int J Mol Sci 2023; 24:ijms24119113. [PMID: 37298065 DOI: 10.3390/ijms24119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
The protein encoded by the vaccinia virus D4R gene has base excision repair uracil-DNA N-glycosylase (vvUNG) activity and also acts as a processivity factor in the viral replication complex. The use of a protein unlike PolN/PCNA sliding clamps is a unique feature of orthopoxviral replication, providing an attractive target for drug design. However, the intrinsic processivity of vvUNG has never been estimated, leaving open the question whether it is sufficient to impart processivity to the viral polymerase. Here, we use the correlated cleavage assay to characterize the translocation of vvUNG along DNA between two uracil residues. The salt dependence of the correlated cleavage, together with the similar affinity of vvUNG for damaged and undamaged DNA, support the one-dimensional diffusion mechanism of lesion search. Unlike short gaps, covalent adducts partly block vvUNG translocation. Kinetic experiments show that once a lesion is found it is excised with a probability ~0.76. Varying the distance between two uracils, we use a random walk model to estimate the mean number of steps per association with DNA at ~4200, which is consistent with vvUNG playing a role as a processivity factor. Finally, we show that inhibitors carrying a tetrahydro-2,4,6-trioxopyrimidinylidene moiety can suppress the processivity of vvUNG.
Collapse
Affiliation(s)
- Evgeniia A Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Grigory V Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Vasily D Zharkov
- Biology Department, Tomsk State University, 634050 Tomsk, Russia
| | - Natalia A Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Olga V Shulenina
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Andrey L Konevega
- NRC "Kurchatov Institute"-B. P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region, 188300 Gatchina, Russia
| | - Irina P Gileva
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Sergei N Shchelkunov
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, 630559 Koltsovo, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Peng Q, Xie Y, Kuai L, Wang H, Qi J, Gao GF, Shi Y. Structure of monkeypox virus DNA polymerase holoenzyme. Science 2023; 379:100-105. [PMID: 36520947 DOI: 10.1126/science.ade6360] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The World Health Organization declared mpox (or monkeypox) a public health emergency of international concern in July 2022, and prophylactic and therapeutic measures are in urgent need. The monkeypox virus (MPXV) has its own DNA polymerase F8, together with the processive cofactors A22 and E4, constituting the polymerase holoenzyme for genome replication. Here, we determined the holoenzyme structure in complex with DNA using cryo-electron microscopy at the global resolution of ~2.8 angstroms. The holoenzyme possesses an architecture that suggests a "forward sliding clamp" processivity mechanism for viral DNA replication. MPXV polymerase has a DNA binding mode similar to that of other B-family DNA polymerases from different species. These findings reveal the mechanism of the MPXV genome replication and may guide the development of anti-poxvirus drugs.
Collapse
Affiliation(s)
- Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yufeng Xie
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lu Kuai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Han Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Future Technology, Peking University, Beijing 100871, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing 100101, China.,Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing 100101, China.,Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| |
Collapse
|
3
|
Abstract
Poxviruses, of which vaccinia virus is the prototype, are a large family of double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells. This physical and genetic autonomy from the host cell nucleus necessitates that these viruses encode most, if not all, of the proteins required for replication in the cytoplasm. In this review, we follow the life of the viral genome through space and time to address some of the unique challenges that arise from replicating a 195-kb DNA genome in the cytoplasm. We focus on how the genome is released from the incoming virion and deposited into the cytoplasm; how the endoplasmic reticulum is reorganized to form a replication factory, thereby compartmentalizing and helping to protect the replicating genome from immune sensors; how the cellular milieu is tailored to support high-fidelity replication of the genome; and finally, how newly synthesized genomes are faithfully and specifically encapsidated into new virions. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew D Greseth
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA;
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA; .,Department of Microbiology and Immunology, The Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Pradines B, Rogier C. Contribution of the French army health service in support of expertise and research in infectiology in Africa. New Microbes New Infect 2018; 26:S78-S82. [PMID: 30402247 PMCID: PMC6205563 DOI: 10.1016/j.nmni.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022] Open
Abstract
Historically, infectious diseases have caused more casualties than battle. The French military health service therefore developed a range of research on vector-borne diseases such as malaria and arboviruses, antibiotic resistance, infectious agents that can be used as biological weapons and vaccines. The main objective is to control naturally acquired or provoked infectious diseases and limit their impact on armed forces as well as on civilian populations in France or abroad, particularly in Africa and anywhere French armies may be deployed. The expertise of the military health service teams in manipulating agents requiring high level of biosafety precautions and in organizing and providing medical care in unnatural conditions, including the battlefield, associated with complementarity staff experience (physicians, biologists, epidemiologists, researchers, pharmacists, logisticians), has been used in the management of the Ebola outbreak in Guinea.
Collapse
Affiliation(s)
- B. Pradines
- Unité Parasitologie et entomologie, Département des maladies infectieuses, Institut de recherche biomédicale des armées, Institut hospitalo-universitaire (IHU) Méditerranée Infection, Marseille, France
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
- Centre national de référence du paludisme, Institut hospitalo-universitaire (IHU) Méditerranée Infection, Marseille, France
| | - C. Rogier
- Division Expertise et stratégie santé de défense, Direction centrale du service de santé des armées, Paris, France
| |
Collapse
|
5
|
Delaune D, Iseni F, Ferrier-Rembert A, Peyrefitte CN, Ferraris O. The French Armed Forces Virology Unit: A Chronological Record of Ongoing Research on Orthopoxvirus. Viruses 2017; 10:E3. [PMID: 29295488 PMCID: PMC5795416 DOI: 10.3390/v10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
Since the official declaration of smallpox eradication in 1980, the general population vaccination has ceased worldwide. Therefore, people under 40 year old are generally not vaccinated against smallpox and have no cross protection against orthopoxvirus infections. This naïve population may be exposed to natural or intentional orthopoxvirus emergences. The virology unit of the Institut de Recherche Biomédicale des Armées (France) has developed research programs on orthopoxviruses since 2000. Its missions were conceived to improve the diagnosis capabilities, to foster vaccine development, and to develop antivirals targeting specific viral proteins. The role of the virology unit was asserted in 2012 when the responsibility of the National Reference Center for the Orthopoxviruses was given to the unit. This article presents the evolution of the unit activity since 2000, and the past and current research focusing on orthopoxviruses.
Collapse
Affiliation(s)
- Déborah Delaune
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Frédéric Iseni
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Audrey Ferrier-Rembert
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Christophe N Peyrefitte
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| | - Olivier Ferraris
- Unité de virologie, Centre National de Référence-Laboratoire Expert Orthopoxvirus, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France.
| |
Collapse
|
6
|
Czarnecki MW, Traktman P. The vaccinia virus DNA polymerase and its processivity factor. Virus Res 2017; 234:193-206. [PMID: 28159613 DOI: 10.1016/j.virusres.2017.01.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Vaccinia virus is the prototypic poxvirus. The 192 kilobase double-stranded DNA viral genome encodes most if not all of the viral replication machinery. The vaccinia virus DNA polymerase is encoded by the E9L gene. Sequence analysis indicates that E9 is a member of the B family of replicative polymerases. The enzyme has both polymerase and 3'-5' exonuclease activities, both of which are essential to support viral replication. Genetic analysis of E9 has identified residues and motifs whose alteration can confer temperature-sensitivity, drug resistance (phosphonoacetic acid, aphidicolin, cytosine arabinsode, cidofovir) or altered fidelity. The polymerase is involved both in DNA replication and in recombination. Although inherently distributive, E9 gains processivity by interacting in a 1:1 stoichiometry with a heterodimer of the A20 and D4 proteins. A20 binds to both E9 and D4 and serves as a bridge within the holoenzyme. The A20/D4 heterodimer has been purified and can confer processivity on purified E9. The interaction of A20 with D4 is mediated by the N'-terminus of A20. The D4 protein is an enzymatically active uracil DNA glycosylase. The DNA-scanning activity of D4 is proposed to keep the holoenzyme tethered to the DNA template but allow polymerase translocation. The crystal structure of D4, alone and in complex with A201-50 and/or DNA has been solved. Screens for low molecular weight compounds that interrupt the A201-50/D4 interface have yielded hits that disrupt processive DNA synthesis in vitro and/or inhibit plaque formation. The observation that an active DNA repair enzyme is an integral part of the holoenzyme suggests that DNA replication and repair may be coupled.
Collapse
Affiliation(s)
- Maciej W Czarnecki
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Paula Traktman
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States; Departments of the Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
7
|
Schormann N, Zhukovskaya N, Bedwell G, Nuth M, Gillilan R, Prevelige PE, Ricciardi RP, Banerjee S, Chattopadhyay D. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases. Protein Sci 2016; 25:2113-2131. [PMID: 27684934 DOI: 10.1002/pro.3058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/07/2022]
Abstract
Uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. The adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. An overview of the current state of the knowledge on the structure-function relationship of D4 is provided here.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Natalia Zhukovskaya
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Gregory Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Manunya Nuth
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Richard Gillilan
- MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca, New York, 14853
| | - Peter E Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Robert P Ricciardi
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT, Argonne, Illinois, 60439
| | | |
Collapse
|