1
|
Kumar R, R R, Diwakar V, Khan N, Kumar Meghwanshi G, Garg P. Structural-functional analysis of drug target aspartate semialdehyde dehydrogenase. Drug Discov Today 2024; 29:103908. [PMID: 38301800 DOI: 10.1016/j.drudis.2024.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme in the biosynthesis of essential amino acids in microorganisms and some plants. Inhibition of ASADHs can be a potential drug target for developing novel antimicrobial and herbicidal compounds. This review covers up-to-date information about sequence diversity, ligand/inhibitor-bound 3D structures, potential inhibitors, and key pharmacophoric features of ASADH useful in designing novel and target-specific inhibitors of ASADH. Most reported ASADH inhibitors have two highly electronegative functional groups that interact with two key arginyl residues present in the active site of ASADHs. The structural information, active site binding modes, and key interactions between the enzyme and inhibitors serve as the basis for designing new and potent inhibitors against the ASADH family.
Collapse
Affiliation(s)
- Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Rajkumar R
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Vineet Diwakar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Nazam Khan
- Clinical Laboratory Science Department, Applied Medical Science College, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
2
|
Khan S, Khan M, Lohani M, Ahmad S, Sherwani S, Bhagwath S, Khan MWA, Wahid M, Aqil F, Haque S. NADP/H binding nearly doubles the stability of a Mycobacterium drug target: an unfolding study. J Biomol Struct Dyn 2023; 41:8018-8025. [PMID: 36166625 DOI: 10.1080/07391102.2022.2127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
Abstract
Mycobacterium Aspartate beta semialdehyde dehydrogenase (ASADH) was studied using various spectroscopic techniques and size exclusion chromatography to examine the unfolding of free (apo) and NADP/H-bound (holo) forms of ASADH. Non-cooperative guanidinium chloride (GdnHCl)-induced unfolding of the apo ASADH was discovered, and no partially folded intermediate structures were stabilized. On the other hand, it was observed that GdnHCl's unfolding of holoenzyme was a cooperative process without any stable intermediate structure. The native form of holoenzyme is found to be stable against the lower concentration of GdnHCl only (namely up to 1.25 M GdnHCl). The tryptophan environment appears to unfold cooperatively in case of the holoenzyme and is in well coordination with the overall unfolding of the holoenzyme. The presence of NADP/H shows a stabilizing effect on the tryptophan environment as well as on the native NADP/H-bound enzyme. Δ G Solvent o values reveal nearly two-fold (∼1.9) conformationally more stable folded holoenzyme compared to its native apo state. The Cm for the apo and holo forms of ASADH are 1.3 and 1.9 M, respectively. Novel drug leads targeting the NADP/H binding domain of ASADH could offer promising drugs against extremely infective Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Sundeep Bhagwath
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Mohd Wajid A Khan
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Farrukh Aqil
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
4
|
Structural characterization of aspartate-semialdehyde dehydrogenase from Pseudomonas aeruginosa and Neisseria gonorrhoeae. Sci Rep 2022; 12:14010. [PMID: 35977963 PMCID: PMC9385607 DOI: 10.1038/s41598-022-17384-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Gonorrhoea infection rates and the risk of infection from opportunistic pathogens including P. aeruginosa have both risen globally, in part due to increasing broad-spectrum antibiotic resistance. Development of new antimicrobial drugs is necessary and urgent to counter infections from drug resistant bacteria. Aspartate-semialdehyde dehydrogenase (ASADH) is a key enzyme in the aspartate biosynthetic pathway, which is critical for amino acid and metabolite biosynthesis in most microorganisms including important human pathogens. Here we present the first structures of two ASADH proteins from N. gonorrhoeae and P. aeruginosa solved by X-ray crystallography. These high-resolution structures present an ideal platform for in silico drug design, offering potential targets for antimicrobial drug development as emerging multidrug resistant strains of bacteria become more prevalent.
Collapse
|
5
|
Amala M, Richard M, Saritha P, Prabhu D, Veerapandiyan M, Surekha K, Jeyakanthan J. Molecular evolution, binding site interpretation and functional divergence of aspartate semialdehyde dehydrogenase. J Biomol Struct Dyn 2020; 40:3223-3241. [DOI: 10.1080/07391102.2020.1846619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mathimaran Amala
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Mariadasse Richard
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Poopandi Saritha
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Dhamodharan Prabhu
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Malaisamy Veerapandiyan
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Kangarajan Surekha
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| |
Collapse
|
6
|
Dahal GP, Launder D, McKeone KMM, Hunter JP, Conti HR, Viola RE. Aspartate semialdehyde dehydrogenase inhibition suppresses the growth of the pathogenic fungus Candida albicans. Drug Dev Res 2020; 81:736-744. [PMID: 32383780 DOI: 10.1002/ddr.21682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022]
Abstract
Potent inhibitors of an essential microbial enzyme have been shown to be effective growth inhibitors of Candida albicans, a pathogenic fungus. C. albicans is the main cause of oropharyngeal candidiasis, and also causes invasive fungal infections, including systemic sepsis, leading to serious complications in immunocompromised patients. As the rates of drug-resistant fungal infections continue to rise novel antifungal treatments are desperately needed. The enzyme aspartate semialdehyde dehydrogenase (ASADH) is critical for the functioning of the aspartate biosynthetic pathway in microbes and plants. Because the aspartate pathway is absent in humans, ASADH has the potential to be a promising new target for antifungal research. Deleting the asd gene encoding for ASADH significantly decreases the survival of C. albicans, establishing this enzyme as essential for this organism. Previously developed ASADH inhibitors were tested against several strains of C. albicans to measure their possible therapeutic impact. The more potent inhibitors show a good correlation between enzyme inhibitor potency and fungal growth inhibition. Growth curves generated by incubating different C. albicans strains with varying enzyme inhibitor levels show significant slowing of fungal growth by these inhibitors against each of these strains, similar to the effect observed with a clinical antifungal drug. The most effective inhibitors also demonstrated relatively low cytotoxicity against a human epithelial cell line. Taken together, these results establish that the ASADH enzyme is a promising new target for further development as a novel antifungal treatment against C. albicans and related fungal species.
Collapse
Affiliation(s)
- Gopal P Dahal
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | | | - Joseph P Hunter
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
7
|
Dahal GP, Viola RE. A Fragment Library Screening Approach to Identify Selective Inhibitors against an Essential Fungal Enzyme. SLAS DISCOVERY 2018; 23:520-531. [PMID: 29608391 DOI: 10.1177/2472555218767844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pathogenic fungi represent a growing threat to human health, with an increase in the frequency of drug-resistant fungal infections. Identifying targets from among the selected metabolic pathways that are unique to microbial species presents an opportunity to develop new antifungal agents against new and untested targets to combat this growth threat. Aspartate semialdehyde dehydrogenase (ASADH) catalyzes a key step in a uniquely microbial amino acid biosynthetic pathway and is essential for microbial viability. This enzyme, purified from four pathogenic fungal organisms ( Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Blastomyces dermatitidis), has been screened against fragment libraries to identify initial enzyme inhibitors. The binding of structural analogs of the most promising lead compounds was measured against these fungal ASADHs to establish important structure-activity relationships among these different inhibitor classes. The most potent of these inhibitors have been docked into structures of this fungal enzyme target to identify important structural elements that serve as critical binding determinants. Several inhibitors with low micromolar inhibition constants have been identified that showed selectivity against these related enzymes from different fungal species. Subsequent screening against a library of drugs and drug candidates identified some additional inhibitors containing a consistent set of functional groups required for fungal ASADH inhibition. Additional elaboration of these core structures will likely lead to more potent and selective inhibitors.
Collapse
Affiliation(s)
- Gopal P Dahal
- 1 Department of Chemistry and Biochemistry, University of Toledo, OH, USA
| | - Ronald E Viola
- 1 Department of Chemistry and Biochemistry, University of Toledo, OH, USA
| |
Collapse
|
8
|
Mank NJ, Pote S, Majorek K, Arnette AK, Klapper VG, Hurlburt BK, Chruszcz M. Structure of aspartate β-semialdehyde dehydrogenase from Francisella tularensis. Acta Crystallogr F Struct Biol Commun 2018; 74:14-22. [PMID: 29372903 PMCID: PMC5947688 DOI: 10.1107/s2053230x17017241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 11/10/2022] Open
Abstract
Aspartate β-semialdehyde dehydrogenase (ASADH) is an enzyme involved in the diaminopimelate pathway of lysine biosynthesis. It is essential for the viability of many pathogenic bacteria and therefore has been the subject of considerable research for the generation of novel antibiotic compounds. This manuscript describes the first structure of ASADH from Francisella tularensis, the causative agent of tularemia and a potential bioterrorism agent. The structure was determined at 2.45 Å resolution and has a similar biological assembly to other bacterial homologs. ASADH is known to be dimeric in bacteria and have extensive interchain contacts, which are thought to create a half-sites reactivity enzyme. ASADH from higher organisms shows a tetrameric oligomerization, which also has implications for both reactivity and regulation. This work analyzes the apo form of F. tularensis ASADH, as well as the binding of the enzyme to its cofactor NADP+.
Collapse
Affiliation(s)
- N. J. Mank
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - S. Pote
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - K.A. Majorek
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 800736, Charlottesville, VA 22908, USA
| | - A. K. Arnette
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - V. G. Klapper
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - B. K. Hurlburt
- Agricultural Research Service, Southern Regional Research Center, US Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - M. Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|