1
|
Oh HN, Myeong NR, Kim T, Min GS, Kim S, Sul WJ. Changes in Fecal Pellet Microbiome of the Cold-Adapted Antarctic Copepod Tigriopus kingsejongensis at Different Temperatures and Developmental Stages. MICROBIAL ECOLOGY 2022; 84:1029-1041. [PMID: 34851441 DOI: 10.1007/s00248-021-01928-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Tigriopus kingsejongensis, a copepod species reported from the King Sejong Station, Antarctica, serves as a valuable food resource in ecosystems. We cultured T. kingsejongensis at three different temperatures (2 °C, 8 °C, and 15 °C) in a laboratory to observe the changes in its fecal pellet microbiome depending on the cultivation temperatures and developmental stages. We observed that the fecal pellet microbiome of the copepod changed with temperature: a lower microbial diversity, higher abundance of the aquatic bacterium Vibrio, and lower abundance of the psychrophilic bacterium Colwellia were noted at higher temperatures. In addition, the fecal pellet microbiome of the copepod changed according to the developmental stage: a lower microbial diversity was noted in egg-attached copepods than in nauplii at 8 °C. We further analyzed three shotgun metagenomes from the fecal pellet samples of T. kingsejongensis at different temperatures and obtained 44 metagenome-assembled genomes (MAGs). We noted that MAGs of V. splendidus D contained glycosyl hydrolases (GHs) encoding chitinases and virulence factors at a higher relative abundance at 15 °C than at lower temperatures. These results indicate that increasing temperature affects the fecal pellet microbiome and the development of copepods. The findings are helpful to understand the changes in cold-adapted copepods and the effect of temperature on their growth.
Collapse
Affiliation(s)
- Han Na Oh
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Nu Ri Myeong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Taeyune Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Gi-Sik Min
- Department of Biological Sciences, Inha University, Incheon, 22212, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
2
|
Cross AR, Roy S, Vivoli Vega M, Rejzek M, Nepogodiev SA, Cliff M, Salmon D, Isupov MN, Field RA, Prior JL, Harmer NJ. Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases. J Biol Chem 2022; 298:101903. [PMID: 35398092 PMCID: PMC9095892 DOI: 10.1016/j.jbc.2022.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.
Collapse
Affiliation(s)
- Alice R Cross
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Sumita Roy
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mirella Vivoli Vega
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Matthew Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Debbie Salmon
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michail N Isupov
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom; Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Joann L Prior
- Dstl, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
3
|
Huddleston JP, Anderson TK, Girardi NM, Thoden JB, Taylor Z, Holden HM, Raushel FM. Biosynthesis of d- glycero-l- gluco-Heptose in the Capsular Polysaccharides of Campylobacter jejuni. Biochemistry 2021; 60:1552-1563. [PMID: 33900734 DOI: 10.1021/acs.biochem.1c00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni is the leading cause of food poisoning in the United States and Europe. The exterior cell surface of C. jejuni is coated with a capsular polysaccharide (CPS) that is essential for the maintenance and integrity of the bacterial cell wall and evasion of the host immune response. The identity and sequences of the monosaccharide components of the CPS are quite variable and dependent on the specific strain of C. jejuni. It is currently thought that the immediate precursor for the multiple variations found in the heptose moieties of the C. jejuni CPS is GDP-d-glycero-α-d-manno-heptose. In C. jejuni NCTC 11168, the heptose moiety is d-glycero-l-gluco-heptose. It has previously been shown that Cj1427 catalyzes the oxidation of GDP-d-glycero-α-d-manno-heptose to GDP-d-glycero-4-keto-α-d-lyxo-heptose using α-ketoglutarate as a cosubstrate. Cj1430 was now demonstrated to catalyze the double epimerization of this product at C3 and C5 to form GDP-d-glycero-4-keto-β-l-xylo-heptose. Cj1428 subsequently catalyzes the stereospecific reduction of this GDP-linked heptose by NADPH to form GDP-d-glycero-β-l-gluco-heptose. The three-dimensional crystal structure of Cj1430 was determined to a resolution of 1.85 Å in the presence of bound GDP-d-glycero-β-l-gluco-heptose, a product analogue. The structure shows that it belongs to the cupin superfamily. The three-dimensional crystal structure of Cj1428 was solved in the presence of NADPH to a resolution of 1.50 Å. Its fold places it into the short-chain dehydrogenase/reductase superfamily. Typically, members in this family display a characteristic signature sequence of YXXXK, with the conserved tyrosine serving a key role in catalysis. In Cj1428, this residue is a phenylalanine.
Collapse
Affiliation(s)
- Jamison P Huddleston
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas K Anderson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 553706, United States
| | - Nicholas M Girardi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 553706, United States
| | - James B Thoden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 553706, United States
| | - Zane Taylor
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 553706, United States
| | - Frank M Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
The sps Genes Encode an Original Legionaminic Acid Pathway Required for Crust Assembly in Bacillus subtilis. mBio 2020; 11:mBio.01153-20. [PMID: 32817102 PMCID: PMC7439481 DOI: 10.1128/mbio.01153-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The crust is the outermost spore layer of most Bacillus strains devoid of an exosporium. This outermost layer, composed of both proteins and carbohydrates, plays a major role in the adhesion and spreading of spores into the environment. Recent studies have identified several crust proteins and have provided insights about their organization at the spore surface. However, although carbohydrates are known to participate in adhesion, little is known about their composition, structure, and localization. In this study, we showed that the spore surface of Bacillus subtilis is covered with legionaminic acid (Leg), a nine-carbon backbone nonulosonic acid known to decorate the flagellin of the human pathogens Helicobacter pylori and Campylobacter jejuni We demonstrated that the spsC, spsD, spsE, spsG, and spsM genes of Bacillus subtilis are required for Leg biosynthesis during sporulation, while the spsF gene is required for Leg transfer from the mother cell to the surface of the forespore. We also characterized the activity of SpsM and highlighted an original Leg biosynthesis pathway in B. subtilis Finally, we demonstrated that Leg is required for the assembly of the crust around the spores, and we showed that in the absence of Leg, spores were more adherent to stainless steel probably because of their reduced hydrophilicity and charge.IMPORTANCE Bacillus species are a major economic and food safety concern of the food industry because of their food spoilage-causing capability and persistence. Their persistence is mainly due to their ability to form highly resistant spores adhering to the surfaces of industrial equipment. Spores of the Bacillus subtilis group are surrounded by the crust, a superficial layer which plays a key role in their adhesion properties. However, knowledge of the composition and structure of this layer remains incomplete. Here, for the first time, we identified a nonulosonic acid (Leg) at the surfaces of bacterial spores (B. subtilis). We uncovered a novel Leg biosynthesis pathway, and we demonstrated that Leg is required for proper crust assembly. This work contributes to the description of the structure and composition of Bacillus spores which has been under way for decades, and it provides keys to understanding the importance of carbohydrates in Bacillus adhesion and persistence in the food industry.
Collapse
|
5
|
Gokey T, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-l-rhamnose biosynthetic pathway enzyme: dTDP-α-d-glucose 4,6-dehydratase, RfbB. J Struct Biol 2018; 202:175-181. [PMID: 29331609 DOI: 10.1016/j.jsb.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/27/2022]
Abstract
Many bacteria require l-rhamnose as a key cell wall component. This sugar is transferred to the cell wall using an activated donor dTDP-l-rhamnose, which is produced by the dTDP-l-rhamnose biosynthetic pathway. We determined the crystal structure of the second enzyme of this pathway dTDP-α-d-glucose 4,6-dehydratase (RfbB) from Bacillus anthracis. Interestingly, RfbB only crystallized in the presence of the third enzyme of the pathway RfbC; however, RfbC was not present in the crystal. Our work represents the first complete structural characterization of the four proteins of this pathway in a single Gram-positive bacterium.
Collapse
Affiliation(s)
- Trevor Gokey
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA.
| |
Collapse
|