1
|
Zhou WY, Wen H, Li YJ, Gao YJ, Zheng XF, Li HX, Zhu GQ, Zhang ZW, Yang ZQ. WGS analysis of two Staphylococcus aureus bacteriophages from sewage in China provides insights into the genetic feature of highly efficient lytic phages. Microbiol Res 2023; 271:127369. [PMID: 36996644 DOI: 10.1016/j.micres.2023.127369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The study of bacteriophages is experiencing a resurgence with the increasing development of antimicrobial resistance in Staphylococcus aureus. Nonetheless, the genetic features of highly efficient lytic S. aureus phage remain to be explored. In this study, two lytic S. aureus phages, SapYZU11 and SapYZU15, were isolated from sewage samples from Yangzhou, China. The phage morphology, one-step growth, host spectrum and lytic activity of these phages were examined, and their whole-genome sequences were analysed and compared with 280 published genomes of staphylococcal phages. The structural organisation and genetic contents of SapYZU11 and SapYZU15 were investigated. The Podoviridae phage SapYZU11 and Herelleviridae phage SapYZU15 effectively lysed all of the 53 S. aureus strains isolated from various sources. However, SapYZU15 exhibited a shorter latent period, larger burst size and stronger bactericidal ability with an anti-bacterial rate of approximately 99.9999% for 24 h. Phylogenetic analysis revealed that Herelleviridae phages formed the most ancestral clades and the S. aureus Podoviridae phages were clustered in the staphylococcal Siphoviridae phage clade. Moreover, phages in different morphology families contain distinct types of genes associated with host cell lysis, DNA packaging and lysogeny. Notably, SapYZU15 harboured 13 DNA metabolism-related genes, 5 lysin genes, 1 holin gene and 1 DNA packaging gene. The data suggest that S. aureus Podoviridae and Siphoviridae phages originated from staphylococcal Herelleviridae phages, and the module exchange of S. aureus phages occurred in the same morphology family. Moreover, the extraordinary lytic capacity of SapYZU15 was likely due to the presence of specific genes associated with DNA replication, DNA packaging and the lytic cycle.
Collapse
Affiliation(s)
- Wen-Yuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Hua Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Ya-Jie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Xiang-Feng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Guo-Qiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Zhen-Wen Zhang
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
2
|
Zhou W, Wen H, Li Y, Gao Y, Zheng X, Yuan L, Zhu G, Yang Z. Whole-Genome Analysis Reveals That Bacteriophages Promote Environmental Adaptation of Staphylococcus aureus via Gene Exchange, Acquisition, and Loss. Viruses 2022; 14:v14061199. [PMID: 35746669 PMCID: PMC9230882 DOI: 10.3390/v14061199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The study of bacteriophages is experiencing a resurgence owing to their antibacterial efficacy, lack of side effects, and low production cost. Nonetheless, the interactions between Staphylococcus aureus bacteriophages and their hosts remain unexplored. In this study, whole-genome sequences of 188 S. aureus bacteriophages—20 Podoviridae, 56 Herelleviridae, and 112 Siphoviridae—were obtained from the National Center for Biotechnology Information (NCBI, USA) genome database. A phylogenetic tree was constructed to estimate their genetic relatedness using single-nucleotide polymorphism analysis. Comparative analysis was performed to investigate the structural diversity and ortholog groups in the subdividing clusters. Mosaic structures and gene content were compared in relation to phylogeny. Phylogenetic analysis revealed that the bacteriophages could be distinguished into three lineages (I–III), including nine subdividing clusters and seven singletons. The subdividing clusters shared similar mosaic structures and core ortholog clusters, including the genes involved in bacteriophage morphogenesis and DNA packaging. Notably, several functional modules of bacteriophages 187 and 2368A shared more than 95% nucleotide sequence identity with prophages in the S. aureus strain RJ1267 and the Staphylococcus pseudintermedius strain SP_11306_4, whereas other modules exhibited little nucleotide sequence similarity. Moreover, the cluster phages shared similar types of holins, lysins, and DNA packaging genes and harbored diverse genes associated with DNA replication and virulence. The data suggested that the genetic diversity of S. aureus bacteriophages was likely due to gene replacement, acquisition, and loss among staphylococcal phages, which may have crossed species barriers. Moreover, frequent module exchanges likely occurred exclusively among the subdividing cluster phages. We hypothesize that during evolution, the S. aureus phages enhanced their DNA replication in host cells and the adaptive environment of their host.
Collapse
Affiliation(s)
- Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225001, China;
| | - Hua Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Yajie Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Yajun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225001, China;
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (W.Z.); (H.W.); (Y.L.); (Y.G.); (X.Z.); (L.Y.)
- Correspondence: ; Tel./Fax: +86-(514)-87978096
| |
Collapse
|
3
|
Wangchuk J, Chatterjee A, Patil S, Madugula SK, Kondabagil K. The coevolution of large and small terminases of bacteriophages is a result of purifying selection leading to phenotypic stabilization. Virology 2021; 564:13-25. [PMID: 34598064 DOI: 10.1016/j.virol.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Genome packaging in many dsDNA phages requires a series of precisely coordinated actions of two phage-coded proteins, namely, large terminase (TerL) and small terminase (TerS) with DNA and ATP, and with each other. Despite the strict functional conservation, TerL and TerS homologs exhibit large sequence variations. We investigated the sequence variability across eight phage types and observed a coevolutionary framework wherein the genealogy of TerL homologs mirrored that of the corresponding TerS homologs. Furthermore, a high purifying selection observed (dN/dS«1) indicated strong structural constraints on both TerL and TerS, and identify coevolving residues in TerL and TerS of phage T4 and lambda. Using the highly coevolving (correlation coefficient of 0.99) TerL and TerS of phage N4, we show that their biochemical features are similar to the phylogenetically divergent phage λ terminases. We also demonstrate using the Surface Plasma Resonance (SPR) technique that phage N4 TerL transiently interacts with TerS.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
4
|
Bonilla E, Costa AR, van den Berg DF, van Rossum T, Hagedoorn S, Walinga H, Xiao M, Song W, Haas PJ, Nobrega FL, Brouns SJJ. Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae. DNA Res 2021; 28:6352498. [PMID: 34390569 PMCID: PMC8386662 DOI: 10.1093/dnares/dsab013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages are an invaluable source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses as biotechnological and medical tools, and help unravel the diversity of biological mechanisms employed by phages to take over the host during viral infection. Aiming to expand the available collection of phage genomes, we have isolated, sequenced, and assembled the genome sequences of four phages that infect the clinical pathogen Klebsiella pneumoniae: vB_KpnP_FBKp16, vB_KpnP_FBKp27, vB_KpnM_FBKp34, and Jumbo phage vB_KpnM_FBKp24. The four phages show very low (0–13%) identity to genomic phage sequences deposited in the GenBank database. Three of the four phages encode tRNAs and have a GC content very dissimilar to that of the host. Importantly, the genome sequences of the phages reveal potentially novel DNA packaging mechanisms as well as distinct clades of tubulin spindle and nucleus shell proteins that some phages use to compartmentalize viral replication. Overall, this study contributes to uncovering previously unknown virus diversity, and provides novel candidates for phage therapy applications against antibiotic-resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Estrada Bonilla
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Teunke van Rossum
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Stefan Hagedoorn
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Hielke Walinga
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Franklin L Nobrega
- Fagenbank, Delft, The Netherlands.,School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| |
Collapse
|